Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T10:03:46.208Z Has data issue: false hasContentIssue false

Effect of Sulfate Content of Biomacromolecules on the Crystallization of Calcium Carbonate

Published online by Cambridge University Press:  17 March 2011

José I. Arias
Affiliation:
Faculty of Veterinary Sciences, Universidad de Chile and Center for Advanced Interdisciplinary Research in Materials Science (CIMAT), Santiago, Chile
Carolina Jure
Affiliation:
Faculty of Veterinary Sciences, Universidad de Chile and Center for Advanced Interdisciplinary Research in Materials Science (CIMAT), Santiago, Chile
Juan P. Wiff
Affiliation:
Faculty of Veterinary Sciences, Universidad de Chile and Center for Advanced Interdisciplinary Research in Materials Science (CIMAT), Santiago, Chile
María S. Fernández
Affiliation:
Faculty of Veterinary Sciences, Universidad de Chile and Center for Advanced Interdisciplinary Research in Materials Science (CIMAT), Santiago, Chile
Víctor Fuenzalida
Affiliation:
Faculty of Veterinary Sciences, Universidad de Chile and Center for Advanced Interdisciplinary Research in Materials Science (CIMAT), Santiago, Chile
José L. Arias
Affiliation:
Faculty of Veterinary Sciences, Universidad de Chile and Center for Advanced Interdisciplinary Research in Materials Science (CIMAT), Santiago, Chile
Get access

Abstract

Natural composite bioceramics such as bone, teeth, carapaces and shells contain organic and inorganic moieties, with the organic matrix components directly involved in the precise formation of these structures. We have previously shown that chicken eggshell contains two main sulfated polymers (proteoglycans), referred to as mammillan and ovoglycan which are involved in nucleation and growth of the eggshell calcite crystals. They differ on their anionic properties due to the carboxylate and sulfate content of their glycosaminoglycan component. Based on biological and biochemical evidences, the putative role of mammillan, a keratan sulfate proteoglycan, is in the nucleation of the first calcite crystals, while that of ovoglycan, a dermatan sulfate proteoglycan, is to regulate the growth and orientation of the later forming crystals of the chicken eggshell. In this communication, a systematic study of the influence of variable concentrations of glycosaminoglycans differing in their sulfation status on the morphology, size and number of calcium carbonate crystals after crystallization on microbridges from a calcium chloride solution under an atmosphere of ammonium carbonate at different pH is presented. Depending on the pH and concentration, the variation of sulfation status drastically changed the morphology, size and number of calcite crystals. The produced calcite particles with various morphologies are promising candidates for some novel materials with desirable shape- and texture-depending properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lowenstam, H.A. and Weiner, S., On Biomineralization, (Oxford University Press, Oxford, 1989) p. 324.Google Scholar
2. Mann, S., Angew. Chem. Int. Ed. 39, 3392 (2000).Google Scholar
3. Simkiss, K. and Wilbur, K.M., Biomineralization: Cell Biology and Mineral Deposition, (Academic Press, San Diego, 1989) p. 337.Google Scholar
4. Aisenberg, J., Hanson, J., Ilan, M., Leiserowitz, L., Koetzle, T.F., Addadi, L., Weiner, S., FASEB J. 9, 262 (1995).Google Scholar
5. Aisenberg, J., Albeck, S., Weiner, S., Addadi, L., J. Crystal Growth 142, 156 (1994).Google Scholar
6. Belcher, A.M., Wu, X.H., Christensen, R.J., Hansma, P.K., Stucky, G.D. and Morse, D.E., Nature 381, 56 (1996).Google Scholar
7. Falini, G., Albeck, S., Weiner, S., Addadi, L., Science 271, 67 (1996).Google Scholar
8. Falini, G., Fermani, S., Gazzano, M. and Ripamonti, A., J. Chem Soc. 2000, 3983.Google Scholar
9. Thompson, J.B., Paloczi, G.T., Kindt, J.H., Michenfelder, M., Smith, B.L., Stucky, G., Morse, D.E. and Hansma, P.K., Biophys. J. 79, 3307 (2000).Google Scholar
10. Murayama, E., Okuno, A., Ohira, T., Takagi, Y. and Nagasawa, H., Comp.Biochem. Physiol. B 126, 511 (2000).Google Scholar
11. Kono, M., Hayshi, N. and Samata, T., Biochem. Biophys. Res. Commun. 269, 213 (2000).Google Scholar
12. Arias, J.L., Fink, D.J., Xiao, S.Q., Heuer, A.H. and Caplan, A.I., Int. Rev. Cytol. 145, 217 (1993).Google Scholar
13. Heuer, A.H., Fink, D.J., Laraia, V.J., Arias, J.L., Calvert, P.D., Kendall, K., Messing, G.L., Blackwell, J., Rieke, P.C., Thompson, D.H., Wheeler, A.P., Veis, A. and Caplan, A.I., Science 255, 1098 (1992).Google Scholar
14. Fernandez, M.S., Araya, M. and Arias, J.L., Matrix Biol. 16, 13 (1997).Google Scholar
15. Fernandez, M.S., Moya, A., Lopez, L. and Arias, J.L., Matrix Biol. 19, 793 (2001).Google Scholar
16. Nys, Y., Hincke, M.T., Arias, J.L., J.M. Garcia-Ruiz and Solomon, S.E., Poultry Avian Biol. Rev. 10, 142 (1999).Google Scholar
17. Arias, J.L., Fernandez, M.S., Dennis, J.E. and Caplan, A.I., Conn. Tiss. Res. 26, 37 (1991).Google Scholar
18. Carrino, D.A., Rodriguez, J.P. and Caplan, A.I., Conn. Tiss. Res. 36, 175 (1997).Google Scholar
19. Hincke, M.T., Gautron, J., Tsang, C.P., McKee, M.D. and Nys, Y., J. Biol. Chem. 274, 32915 (1999).Google Scholar
20. Nys, Y., Zawadzki, J., Gautron, J. and Mills, A.D., Poultry Sci. 70, 1236 (1991).Google Scholar
21. Pines, M., Knopov, V. and Bar, A., Matrix Biol. 14, 763 (1994).Google Scholar
22. Dennis, J.E., Xiao, S.Q., Agarwal, M., Fink, D.J., Heuer, A.H. and Caplan, A.I., J. Morphol. 228, 287 (1996).Google Scholar
23. Feng, Q.L., Zhu, X., Li, H.D. and Kim, T.N., J. Crystal Growth 233, 548 (2001).Google Scholar
24. Dominguez-Vera, J.M., Gautron, J., Garcia-Ruiz, J.M. and Nys, Y., Poultry Sci. 79, 901 (2000).Google Scholar
25. Casu, B., Adv. Carbohydrate Chem. Biochem. 43, 51 (1985).Google Scholar
26. Weiner, S. and Traub, W., Phil. Trans. R. Soc. London Ser. B 304, 421 (1984).Google Scholar
27. Addadi, L., Moradian, J., Shay, J. E., Maroudas, N.G. and Weiner, S., Proc. Natl. Acad. Sci. USA 84, 2732 (1987).Google Scholar
28. Aizenberg, J., Black, A.J. and Whitesides, G.M., J. Am. Chem. Soc. 121, 4500 (1999).Google Scholar
29. Cölfen, H. and Qi, L., Chem Eur. J. 7, 106 (2001).Google Scholar
30. Albeck, S., Weiner, S. and Addadi, L., Chem. Eur. J. 2, 278 (1996).Google Scholar
31. Orme, C.A., Noy, A., Wierzbicki, A., McBride, M.T., Grantham, M., Teng, H.H., Dove, P.M. and DeYoreo, J.J., Nature 411, 775 (2001).Google Scholar
32. Didymus, J.M., Mann, S., Sanderson, N.P., Oliver, P., Heywood, B.R. and Aso-Samper, E.J., in Mechanisms and Phylogeny of Mineralization in Biological Systems, edited by Suga, S. and Nakahara, H. (Springer-Verlag, Tokyo, 1991) pp. 267271.Google Scholar
33. Liang, J.N., Chakrabarti, B., Ayotte, L. and Perlin, A.S., Carbohydr. Res. 106, 101 (1982).Google Scholar
34. Nieduszynski, I.A., Melino, G. and Hampton, I., Uppsala J. Med. Sci. 2, 146 (1977).Google Scholar