Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T13:58:47.276Z Has data issue: false hasContentIssue false

Effect of Substrate Elasticity on In Vitro Aging of Human Mesenchymal Stem Cells

Published online by Cambridge University Press:  09 January 2013

Courtney E. LeBlon
Affiliation:
Mechanical Engineering & Mechanics, Center for Advanced Materials & Nanotechnology Lehigh University, Bethlehem, PA
Caitlin R. Fodor
Affiliation:
Bioengineering Program, Center for Advanced Materials & Nanotechnology Lehigh University, Bethlehem, PA
Tony Zhang
Affiliation:
Bioengineering Program, Center for Advanced Materials & Nanotechnology Lehigh University, Bethlehem, PA
Xiaohui Zhang
Affiliation:
Mechanical Engineering & Mechanics, Center for Advanced Materials & Nanotechnology Lehigh University, Bethlehem, PA
Sabrina S. Jedlicka
Affiliation:
Bioengineering Program, Center for Advanced Materials & Nanotechnology Lehigh University, Bethlehem, PA Materials Science & Engineering, Center for Advanced Materials & Nanotechnology Lehigh University, Bethlehem, PA Center for Advanced Materials & Nanotechnology Lehigh University, Bethlehem, PA
Get access

Abstract

Human mesenchymal stem cells (hMSCs) were routinely cultured on tissue-culture polystyrene (TCPS) to investigate the in vitro aging and cell stiffening. hMSCs were also cultured on thermoplastic polyurethane (TPU), which is a biocompatible polymer with an elastic modulus of approximately 12.9MPa, to investigate the impact of substrate elastic modulus on cell stiffening and differentiation potential. Cells were passaged over several generations on each material. At each passage, cells were subjected to osteogenic and myogenic differentiation. Local cell elastic modulus was measured at every passage using atomic force microscopy (AFM) indentation. Gene and protein expression was examined using qRT-PCR and immunofluorescent staining, respectively, for osteogenic and myogenic markers. Results show that the success of myogenic differentiation is highly reliant on the elastic modulus of the undifferentiated cells. The success of osteogenic differentiations is most likely somewhat dependent on the cell elastic modulus, as differentiations were more successful in earlier passages, when cells were softer.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pittenger, M. F. et al. ., Science 284(5411), 143147 (1999).CrossRefGoogle Scholar
Friedenstein, AJ et al. ., Exp.Hematol. 10(2), 217227 (1982).Google Scholar
Radmacher, M. et al. ., Biophys.J. 70(1), 556567 (1996).CrossRefGoogle Scholar
Darling, Eric M. et al. ., J.Biomech. 41(2), 454464 (2008).CrossRefGoogle Scholar
Maloney, John M. et al. ., Biophys.J. 99(8), 24792487 (2010).CrossRefGoogle Scholar
Titushkin, Igor and Cho, Michael, Biophys.J. 93(10), 36933702 (2007).CrossRefGoogle Scholar
Bonab, MM et al. ., BMC Cell Biol. 7, 14 (2006).CrossRefGoogle Scholar
Banfi, A. et al. ., Exp.Hematol. 28(6), 707715 (2000).CrossRefGoogle Scholar
Bruder, S. P., Jaiswal, N. and Haynesworth, S. E., J.Cell.Biochem. 64(2), 278294 (1997).3.0.CO;2-F>CrossRefGoogle Scholar
Zhou, Shuanhu et al. ., Aging Cell 7(3), 335343 (2008).CrossRefGoogle Scholar
Kim, Jiseon et al. ., Arch.Pharm.Res. 32(1), 117126 (2009).CrossRefGoogle Scholar
Yim, Evelyn K. F. et al. ., Biomaterials 31(6), 12991306 (2010).CrossRefGoogle Scholar
Hofmann, U. G. et al. ., J.Struct.Biol. 119(2), 8491 (1997).CrossRefGoogle Scholar
Mathur, A. B. et al. ., J.Biomech. 34(12), 15451553 (2001).CrossRefGoogle Scholar
Radmacher, M., IEEE Eng.Med.Biol.Mag. 16(2), 4757 (1997).CrossRefGoogle Scholar
Engler, Adam J. et al. ., Cell 126(4), 677689 (2006).CrossRefGoogle ScholarPubMed
Hertz, H., J. reine und angewandte Mathematik 92, 156171 (1882).Google Scholar
Rico, F. et al. ., Phys Rev E. 72(2), 021914 (2005).CrossRefGoogle Scholar
Sugitate, Toshihiro et al. ., Curr. Appl. Phys. 9(4), E291E293 (2009).CrossRefGoogle Scholar
Gordon, AM, Homsher, E. and Regnier, M., Physiol.Rev. 80(2), 853924 (2000).CrossRefGoogle Scholar
Boheler, K. R. et al. ., Circ.Res. 91(3), 189201 (2002).CrossRefGoogle Scholar
Young, P. et al. ., EMBO J. 17(6), 16141624 (1998).CrossRefGoogle Scholar
Costa, ML et al. ., Brazilian J of Med. and Biol. Res. 37(12), 18191830 (2004).CrossRefGoogle Scholar
Sugi, Y. and Lough, J., Developmental Dynamics 193(2), 116124 (1992).CrossRefGoogle Scholar
Frid, MG et al. ., Dev.Biol. 153(2), 185193 (1992).CrossRefGoogle Scholar
Wick, M., Poult.Sci. 78(5), 735742 (1999).CrossRefGoogle Scholar
Engler, AJ et al. ., J.Cell Biol. 166(6), 877887 (2004).CrossRefGoogle Scholar
Kelm, RJ et al. ., J.Biol.Chem. 269(48), 3014730153 (1994).Google Scholar
Denhardt, DT and Noda, M., J.Cell.Biochem., 92-+ (1998).Google Scholar
Lian, JB et al. ., Vitamins and Hormones - Adv. in Res.. and App., 55, 443509 (1999).Google Scholar
Ducy, P., Geoffroy, V. and Karsenty, G., Connect. Tissue Res. 35(1-4), 714 (1996).CrossRefGoogle Scholar
Hessle, L. et al. ., Proc.Natl.Acad.Sci.U.S.A. 99(14), 94459449 (2002).CrossRefGoogle Scholar
Sila-Asna, M. et al. ., Kobe J Med Sci 53(1-2), 2535 (2007).Google Scholar