Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T02:13:39.955Z Has data issue: false hasContentIssue false

Effect of Substitutions at the Nickel Site on the Electronic Structure of LaNi5 and its Hydrides

Published online by Cambridge University Press:  10 February 2011

M. Gupta*
Affiliation:
Institut des Sciences des Matériaux, Bâtiment 415, Université Paris-Sud, 91405-ORSAY, France
Get access

Abstract

The effect of Ni substitution in LaNi5 by 3d and s-p elements on the electronic structure of the intermetallic and its hydrides has been investigated using the self consistent linear muffin tin orbital (LMTO) method in the atomic sphere approximation (ASA). The Fermi level, EF, of LaNi4M (M = Fe,Co,Mn) is found to lie in the narrow additional M 3d subband above the Ni d states, leading to an increase in the density of states (DOS) at EF. In contrast, the substitution of Ni by an s element of the 3d series, Cu, or by an s-p element: Al or Sn results in a progressive filling of the Ni-d bands and in a decrease of the DOS at EF. In all the substituted intermetallic compounds, we find that the lattice expansion accounts for less than 50% of the observed decreased stability, this shows the importance of the effect of chemical substitution. We also discuss the factors which affect the electronic structure and the stability of the hydrides and compare our results with available experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Van Mal, H. H., Bushow, K. H. J. and Kuijpers, F. A., J. Less-Comm Metals 32, 289 (1973).Google Scholar
2. Van Mal, H. H., Bushow, K. H. J. and Miedema, A. R., J. Less-Common Metals 35, 65 (1974).Google Scholar
3. Takeshita, T., Dublon, G., McMasters, O. D. and Gschneidner, K. A. Jr., Rare Earths in Modern Science and Technology 3, MacCarthy, G. J., Rhyne, J. J. and Silver, H. B., eds., Plenum, New York p. 487 (1982).Google Scholar
4. Mendelsohn, M. H., Gruen, D. M. and Dwight, A. E., Nature 269, 45 (1977).Google Scholar
5. Percheron-Guégan, A., Lartigue, C., Achard, J-C., Germi, P. and Tasset, F., J. Less-Common Metals 74, 1 (1980).Google Scholar
6. Percheron-Guégan, A., Interstitial Intermetallic Alloys, Grandjean, F. et al., eds., Kluwer Academic Publishers, Netherlands, p. 77 and references there in (1995).Google Scholar
7. Bouten, P. C. and Miedema, A. R., J. Less-Common Metals 71, 147 (1980).Google Scholar
8. Griessen, R. and Riesterer, T., Topics in Applied Physics, Hydrogen in IntermetallicCompounds I, Schlapbach, L. ed. Springer-Verlag, p. 219 and references there in (1988).Google Scholar
9. Kuijpers, F. A. and Loopstra, B. O., J. Phys. Chem. Sol. 35, 301 (1974).Google Scholar
10. Gupta, M. and Schlapbach, L., Topics in Applied Physics, Hydrogen in IntermetallicCompounds I, Schlapbach, L. ed. Springer-Verlag, p. 139 and references there in (1988).Google Scholar
11. Ohlendorf, D., Flotow, H. E.: J. Chem. Phys. 73, 2973 (1980).Google Scholar
12. Schlapbach, L., Pina-Perez, C., Siegrist, T., Solid State Commun. 41, 135 (1982).Google Scholar
13. Fuggle, J-C., Hillebrecht, F. U., Zeller, R., Zolniereck, Z., Bennett, P. A., Freiburg, Ch., Phys. Rev B27, 2145 (1982).Google Scholar
14. Yvon, K. and Fisher, P., Topics in Applied Physics Hydrogen in Intermetallic Compounds I, 63, Schlappach, L. ed., Springer Verlag, p. 87 and references there in. (1988).Google Scholar
15. Wallace, W. E. and Pourarian, F., J. Phys. Chem. 86, 4958 (1982).Google Scholar
16. Gurewitz, E., Pinto, H., Dariel, M. P. and Shaked, H., J. Phys. F: Met. Phys. 13, 545 (1983).Google Scholar