Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T09:30:07.174Z Has data issue: false hasContentIssue false

Effect of RF Power on the Characteristic Parameters of W/n-GaAs Schottky Contacts Fabricated by RF Sputtering

Published online by Cambridge University Press:  26 February 2011

A. Singh
Affiliation:
Laboratorio de Semiconductores, Departamento de Fisica, Universidad de Oriente, Apartado 188, Cumana 6101 Sucre, Venezuela
G. Aroca
Affiliation:
Laboratorio de Semiconductores, Departamento de Fisica, Universidad de Oriente, Apartado 188, Cumana 6101 Sucre, Venezuela
L. Velásquez
Affiliation:
Laboratorio de Semiconductores, Departamento de Fisica, Universidad de Oriente, Apartado 188, Cumana 6101 Sucre, Venezuela
Get access

Abstract

W/n-GaAs/In Schottky contacts of area 1.75 mm2 were fabricated by deposition of W on (100) n-GaAs by rf Sputtering using rf power values in the range 200–400 Watt. The I-V and high frequency C-V measurements at 300 K, in the 200 Watt W/n-GaAs Schottky contact indicated that W formed a good rectifying contact to n-GaAs, with a rectification ratio (r) of 270, ideality factor (n) of 1.39, reverse saturation current (Io) of 1.2×10−6 A and the C-V barrier height (φbo) of 1.6 V. However, n and Io increased, whereas r and φbo decreased for the W/n-GaAs Schottky contacts prepared using higher rf power. For the 300 Watt W/n-GaAs contact, the values of 70, 1.70, 6.3}10−6 A, and 1.2V for r, n, Io and φbo, respectively, were estimated. The low frequency forward bias capacitance (or surface defect density) was an order of magnitude higher in the 300 Watt contact than in the 200 Watt contact. This fact suggested that the degradation in the quality of W/n-GaAs Schottky contacts fabricated by using high rf power was caused by high density surface defects created during sputter deposition of W on n-GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yokoyama, N., Mimura, T., Fukuta, M. and Ishikkawa, H., International Solid-State Circuits Conference, Digest of Technical papers, Edited by Winner, L. (IEEE, New York, 1981), p. 219.Google Scholar
2. Smith, B. L. and Abbot, M., Solid-State Electron. 15, 361 (1972).Google Scholar
3. Brillson, L. J., Viturro, R. E., Slade, M. L., Chiaradia, P., Kilday, D., Kelly, M. K. and Margaritondo, G, Appl. Phys. Lett., 50 1379 (1987).Google Scholar
4. Lau, S. S., Chen, W. X., Marshell, E. D., Pai, C. S., Tse, W. F. and Kuech, T. F., Appl.Phys. Lett. 47, 1298 (1985).Google Scholar
5. Yu, K. M., Jaklevic, J. M. and Haller, E. E., Appl. Phys. A 44, 177 ((1987).Google Scholar
6. Crystal Specialties, 2853 Janitell Road, Colorado Springs, Co 80906 USAGoogle Scholar
7. Singh, A. and Velásquez, L., (submitted for publication to J. Appl. Phys.)Google Scholar
8. Rhoderick, E H. and Williams, R. H., Metal-Semiconductor Contacts, Clarendon Press, Oxford (1988), p. 99.Google Scholar
9. Singh, A., Reinhardt, K. C. and Anderson, W. A., J. Appl. Phys. 68, 3475 (1990)Google Scholar
10. Singh, A., Solid St. Electron. 28, 223, (1985)Google Scholar
11. Singh, A., Cova, P. and Masut, R., J. Appl. Phys. 74, 6714 (1993)Google Scholar
12. Singh, A., Cova, P. and Masut, R., Mater. Res. Soc. Symp. Proc. 318, 515 (1994).Google Scholar
13. Lehovec, K., Appl. Phys.Lett. 8, 48 (1966).Google Scholar
14. Fontaine, C., Okumura, T. and Tu, K. N., J. Appl. Phys. 54, 1404 (1983).Google Scholar
15. Kuriyama, Y., Ohfuji, S. and Nagano, J., J. Appl. Phys. 62, 1318 (1987).Google Scholar