Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T14:33:02.541Z Has data issue: false hasContentIssue false

Effect of Pulsed Magnetic Fields on Crystallization of Polymers

Published online by Cambridge University Press:  11 February 2011

Mark N. Levin*
Affiliation:
Nuclear Physics Department, Voronezh State University, Voronezh 394693, RUSSIA, [email protected]
Get access

Abstract

The effect of pre-crystallization pulsed magnetic field (PMF) treatment of linear flexible-chain polymers on kinetics of their crystallization and structure in the crystalline state has been studied in polydimethylsiloxane (PDMS) and polyethylene oxide (PEO). It was established that the PMF treatment can destruct the initial net of non-chemically bonded “physical nodes” of the polymer and thus turn the melt into a metastable state with the increased sensitivity to regimes of crystallization. The effect revealed can lay the foundation for the development of new effective methods of controlled crystallization of the flexible-chain polymers, including fractionation and crystallization of polymorphic polymers in the chosen structural modification.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Levin, M.N. and Maslovsky, V.M. in Defect - Interface Interactions, edited by Mills, M.J., Sands, T.D. and King, A.H., (Mater. Res. Soc. Proc. 319, Pittsburgh, PA, 1994) pp.429434; Solid State Commun. 90, 813 (1994);Google Scholar
Lichmanov, Yu.O., Solid State Commun., Pis′ma Zh. Tekh. Fiz. 20 (4), 27 (1994) [Tech. Phys. Lett. 20, 145 (1994)].Google Scholar
2. Levin, M.N. and Zon, B.A., Zh. Eksp. Teor. Fiz. 111, 1373 (1997) [JETP 84, 760 (1997)]; Phys. Lett. A 260, 386 (1999).Google Scholar
3. Levin, M.N., Semenova, G.V., and Sushkova, T.P., Dokl. Akad. Nauk Russia, ser. Physics, 388 (1), 3 (2003) [Doklady Physics, 48 (1), 3 (2003)];Google Scholar
Dolgopolova, E.A., and Postnikov, V.V., Dokl. Akad. Nauk Russia, ser. Physics, Pis′ma Zh. Tekh. Fiz. 28 (19), 50 (2002) [Tech. Phys. Lett. 28 (10), 818 (2002)].Google Scholar
4. Levin, M.N., Postnikov, V.V., and Palagin, M.Yu., Fiz. Tverd. Tela 45 (3), 513 (2003) [Phys. Solid State. 45 (3) (2003)].Google Scholar
5. Levin, M.N., Semenov, V.N., and Naumov, A.V., Pis′ma Zh. Tekh. Fiz. 27 (7), 35 (2001) [Tech. Phys. Lett. 27 (4), 279 (2001)];Google Scholar
Meteleva, Yu.V., Pis′ma Zh. Tekh. Fiz., Tech. Phys. Lett., 27 (10), 37 (2001) [Tech. Phys. Lett. 27 (5), 411 (2001)].Google Scholar
6. Levin, Mark N., Kadmensky, Stanislav G., Surovtzev, Igor S., Zon, Boris A. and Rovinsky, Alexander P., R.F. Patent No 2092931 (10 October 1997).Google Scholar
7. Levin, M.N. and Zon, B.A., in Self-Organized Processes in Semiconductor Alloys-Spontaneous Ordering, Composition Modulation, and 3-D Islanding, edited by Follstaedt, D.M., Mascarenhas, A., (Mater. Res. Soc. Proc. 583, Pittsburgh, PA, 2000) pp.278783.Google Scholar
8. Levin, M.N. and Matveev, N.N., Zh. Fiz. Khim. 75 (10), 1886 (2001) [Russian J. Phys. Chem. 75 (10), 1728 (2001)].Google Scholar
9. Levin, M.N., Postnikov, V.V., and Matveev, N.N., Zh. Fiz. Khim. 77 (4) (2003) [Russian J. Phys. Chem. 77 (10) (2001)]; Vysokomol. Soedin. Ser. A. 45 (2) (2003) [Polymer Science, Ser. A, 45 (2) (2003)].Google Scholar