Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T03:42:25.647Z Has data issue: false hasContentIssue false

Effect of Plasma Treatment and TMCTS Vapor Annealing on the Reinforcement of Porous low-k Films

Published online by Cambridge University Press:  01 February 2011

Kazuo Kohmura
Affiliation:
MIRAI-ASET, Tsukuba, Japan
Hirofumi Tanaka
Affiliation:
MIRAI-ASET, Tsukuba, Japan
Shunsuke Oike
Affiliation:
MIRAI-ASET, Tsukuba, Japan
Masami Murakami
Affiliation:
MIRAI-ASET, Tsukuba, Japan
Tetsuo Ono
Affiliation:
MIRAI-ASET, Tsukuba, Japan
Yutaka Seino
Affiliation:
MIRAI-ASRC-AIST, Tsukuba, Japan
Takamaro Kikkawa
Affiliation:
MIRAI-ASRC-AIST, Tsukuba, Japan RCNS, Hiroshima Univ., Higashi-Hiroshima, Japan
Get access

Abstract

A novel process of TMCTS vapor annealing combined with a plasma treatment has been developed for improving the mechanical strength of porous silica films having ultralow dielectric constant. When porous silica films annealed under 1,3,5,7-tetramethylcyclotetrasiloxane (TMCTS) vapor were treated with argon plasma and then re-treated with TMCTS vapor, the mechanical strength (i.e., elastic modulus, hardness) of the films increased significantly. Results of Fourier transform infrared spectroscopy (FT-IR) suggested an accelerative effect resulted from the plasma treatment on the conversion of Si-CH3 and Si-H groups to Si-OH groups. The latter group appears to react faster with TMCTS from the second annealing to form cross-linked polymer network on the porous silica wall surfaces. The resulting cross-linked network is thought to keep the low permittivity and enhance the mechanical strength of the low-k films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kohmura, K., Oike, S., Murakami, M., Tanaka, H., Takada, S., Seino, Y., and Kikkawa, T., Mat. Res. Soc. Symp. Proc. 812, 85 (2004).Google Scholar
2. Shamiryan, D., Baklanov, M. R., Vahnaelemeersch, S., and Maex, K., J. Vac. Sci. Technol. B 20, 1923 (2003).Google Scholar
3. Oku, Y., Fujii, N., Y, , Seino, Takasu, Y., takahashi, H., Sonoda, Y., Goto, T., Miyoshi, H., Takada, S., and Kikkawa, T., Ext. Abs. SSDM 2004, Tokyo, 46, (2004).Google Scholar
4. Ono, T., Kinoshita, K., Goto, T., Takahashi, H., Fujii, N., Sonoda, Y., Oku, Y., Kohmura, K., Hata, N., and Kikkawa, T., Dry Process Symp. 229, (2004).Google Scholar
5. Ogawa, M., Chem. Commun. 1149 (1996).Google Scholar
6. Lu, Y., Ganguli, R., Drewien, C. A., Anderson, M. T., Brinker, C. J., Gong, W., Guo, Y., Soyes, H., Dunn, B., Huang, M. H., and Zink, J. I., Nature 389, 364 (1997).Google Scholar
7. Zhao, D., Yang, P., Melosh, N., Feng, J., Chmelka, B. F., and Stucky, G. D., Adv. Mater. 10, 1380 (1998).Google Scholar