Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T15:26:33.790Z Has data issue: false hasContentIssue false

Effect of Nanocavities on the Thermoelectric Properties of Polycrystalline Silicon

Published online by Cambridge University Press:  11 October 2011

Ekaterina Selezneva
Affiliation:
Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 53, 20125 Milano, Italy
Andrea Arcari
Affiliation:
Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 53, 20125 Milano, Italy
Gilles Pernot
Affiliation:
Department of Electrical Engineering, University of California, 1156 High Street, 95064 Santa Cruz, U.S.A
Elisabetta Romano
Affiliation:
Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 53, 20125 Milano, Italy
Gianfranco Cerofolini
Affiliation:
Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 53, 20125 Milano, Italy
Rita Tonini
Affiliation:
Department of Physics, University of Modena and Reggio Emilia, via Campi 213,41100 Modena, Italy
Stefano Frabboni
Affiliation:
Department of Physics, University of Modena and Reggio Emilia, via Campi 213,41100 Modena, Italy
Giampiero Ottaviani
Affiliation:
Department of Physics, University of Modena and Reggio Emilia, via Campi 213,41100 Modena, Italy
Ali Shakouri
Affiliation:
Department of Physics, University of Modena and Reggio Emilia, via Campi 213,41100 Modena, Italy
Dario Narducci
Affiliation:
Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 53, 20125 Milano, Italy
Get access

Abstract

Nanostructuring has opened new ways to increase the thermoelectric performance of a host of materials, mainly by decreasing their thermal conductivity κ while preserving the Seebeck coefficient S and electrical conductivity σ. The thermoelectric properties of degenerated polycrystalline silicon films with nanocavities (NCs) have been studied as a function of annealing temperature upon isochronous annealings in argon carried out every 50°C in the range 500 – 1000°C which were used to modify the shape of the NCs. We found that presence of the NCs had no negative effect on the electronic properties of the system. The measured values of S and σ were close to those previously reported for the blank polycrystalline silicon films with the same doping level. The thermal conductivity was also found to be close to the value measured on the blank sample, about half of the reported value in polycrystals. This led to a power factor of 15.2 mWm-1K-2 and a figure of merit of 0.18 at 300 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Boukai, A. I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard, W. A., and Heath, J. R., Nature Lett. 451, 168 (2008).Google Scholar
2. Hochbaum, A. I., Chen, R., Delgado, R. D., Liang, W., Garnett, E. C., Najarian, M., Majumdar, A., and Yang, P., Nature Lett. 451, 163 (2008).Google Scholar
3. Yamamoto, A., Takazawa, H., and Ohta, T., Proc. Int. Conf. Thermoelectrics p. 428 (1999).Google Scholar
4. Romano, E., Narducci, D., Corni, F., Frabboni, S., Ottaviani, G., Tonini, R., and Cerofolini, G., Mater. Sci. Eng. B 159-160, 173 (2009).Google Scholar
5. Cerofolini, G., Romano, E., Narducci, D., Corni, F., Frabboni, S., Ottaviani, G. and Tonini, R., J. Phys. D: Appl. Phys. 42, 062001 (2009).Google Scholar
6. Tang, J., Wang, H.-T., Lee, D. H., Fardy, M., Huo, Z., Russell, T. P., and Yang, P., Nanolett. 10, 4279 (2010).Google Scholar
7. Landi, E., Armigliato, A., Solmi, S., Koegler, R., and Wieser, E., Appl. Phys. A 47, 359 (1988).Google Scholar
8. Raineri, V., Saggio, M., and Rimini, E., J. Mater. Res. 15, 1449 (2000).Google Scholar
9. Frabboni, S., Corni, F., Nobili, C., Tonini, R., and Ottaviani, G., Phys. Rev. B 69, 165209 (2004).Google Scholar
10. Wood, C., Chmielewski, A., and Zoltan, D., Rev. Sci. Instrum. 59, 951 (1988).Google Scholar
11. Cahill, D. G., Rev. Sci. Instrum. 75, 5119 (2004).Google Scholar
12. Pernot, G., Stoffel, M., Savić, I., Pezzoli, F., Chen, P., et al. , Nature Mater. 9, 491 (2010).Google Scholar
13. Carslaw, H. S. and Jaeger, J., Conduction of Heat in Solids (Oxford University Press, London, 1959).Google Scholar
14. Narducci, D., Selezneva, E., Cerofolini, G., Romano, E., Tonini, R., and Ottaviani, G., Proc. European Conf. Thermoelectrics p. 141 (2010).Google Scholar
15. Narducci, D., Selezneva, E., Arcari, A., Cerofolini, E., and Romano, G., Tonini, R., and Ottaviani, G., Mater. Res. Soc. Symp. Proc. 1314 (2011).Google Scholar
16. Slack, G. A., J. Appl. Phys. 35, 3460 (1964).Google Scholar
17. Lee, J.– H., Grossman, J. C., Reed, J., and Galli, G., Appl. Phys. Lett. 91, 223110 (2007).Google Scholar
18. Ju, Y. S. and Goodson, K. E., Appl. Phys. Lett. 74, 3005 (1999).Google Scholar