Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T11:25:26.405Z Has data issue: false hasContentIssue false

Effect of Mesogenic Organic Salts on Vulcanization and Physical Properties of Natural Rubber Compounds

Published online by Cambridge University Press:  17 December 2012

F. Avalos
Affiliation:
Universidad Autónoma Coahuila, Facultad de Ciencias Químicas, Saltillo Coahuila, México,
M. Tellez-Rosas
Affiliation:
Universidad Autónoma Coahuila, Facultad de Ciencias Químicas, Saltillo Coahuila, México,
M.E. Castañeda-Flores
Affiliation:
Universidad Autónoma Coahuila, Facultad de Ciencias Químicas, Saltillo Coahuila, México,
F. J. Martínez-Casado
Affiliation:
Instituto Andaluz de Ciencias de la Tierra (IACT), CSIC-UGR, Granada, Spain,
J. A. Rodríguez-Cheda
Affiliation:
Departamento de Química-Física, Fac. CC QQ, Univ. Complutense de Madrid. Madrid, Spain.
M. Arroyo
Affiliation:
Instituto de Ciencia y Tecnología de Polímeros, CSIC, Madrid, Spain,
M. A. López-Manchado
Affiliation:
Instituto de Ciencia y Tecnología de Polímeros, CSIC, Madrid, Spain,
Get access

Abstract

The effect of mesogenic organic salts as reinforcing fillers for natural rubber has been investigated. The influence of cation size (thallium and sodium) and organic chain length (thallium (I) pentanoate and dodecanoate) on the vulcanization parameters, physical and mechanical characteristics and rheological behavior has also been analyzed. In general, the maximum torque of the vulcanizates increases in the presence of the salts and is clearly manifested in a sensible increase in tensile modulus and strength of the composites. The reinforcing effect of these salts is noticeable in the natural rubber matrix. The thallium (I) salts are more effective reinforcements than the sodium salt, and the length of the organic chain hardly has any influence on the mechanical properties. The composites based on the thallium (I) dodecanoate salt show a very peculiar rheological behavior with a “plateau” in the G’ and G” vs temperature graphics which is related with solid phase I, existing between 83.5 ºC and 127 ºC, characterized as a plastic condis phase. This issue is especially interesting for the fabrication of devices such as sensors to control, for instance, the security (resistance of a material) as a function of temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wakabayashi, K. and Register, R. A., Polymer, 47, 28742883 (2006).CrossRefGoogle Scholar
Duruz, J. J. and Ubbelohd, .Ar, Proceedings RS London A- Math. Phys. Sci., 330, 16 (1972).CrossRefGoogle Scholar
Ubbelohd, .Ar, Michels, H. J. and Duruz, J. J., Nature, 228, 5056(1970).CrossRefGoogle Scholar
Patrick Stahly, G., Cryst. Growth Des, 9, 42124229(2009)CrossRefGoogle Scholar
Kitagawa, S., Kitaura, R. and Noro, S., Angew. Chem. Int. Ed., 43, 23342375(2004).CrossRefGoogle Scholar
Franzosini, M. S. P., Thermodynamic and Transport Properties of Organic Salts, Pergamon Press, London, 1980.Google Scholar
Flory, J. P., Principles of Polymer Chemistry, Cornell University Press (New York, 1953).Google Scholar
Kissinger, H. E., J.Res. Natl. Bur. Stand. (US), 57(4), 217221(1956).CrossRefGoogle Scholar