Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T07:03:33.586Z Has data issue: false hasContentIssue false

Effect of Equivalent Sites on the Dynamics of Bimetallic Nanoparticles

Published online by Cambridge University Press:  18 December 2012

C. Fernández-Navarro
Affiliation:
Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México 66450
A. J. Gutiérrez-Esparza
Affiliation:
División de Ciencias e Ingenierías, Universidad de Guanajuato, León, Gto. México 37150
J.M. Montejano-Carrizales
Affiliation:
Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., México 78000
S.J. Mejía-Rosales
Affiliation:
Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México 66450
Get access

Abstract

Using a Sutton and Chen interatomic potential, we study the molecular dynamics of Au-Pd nanoparticles with an initial icosahedral structure at different temperatures and concentrations, where each relative concentration of the 561-atom particles was made by placing atoms of the same species at equivalent sites, in order to identify under which conditions the melting transition temperature appears for each particle. In addition, we compute global order parameters in order to correlate the obtained results with the caloric curves of each particle. As a result, we observe that the melting transition temperature depends on the relative atomic positions of gold and palladium. The melting transition temperature of the Au-Pd alloy particles appears at higher temperature than that of the pure-gold particle. From the analysis of the structure of the particles, we found that the melting temperature increases with the proportion of gold atoms, and for those particles with a higher concentration of palladium on the surface, we observe an early migration of gold atoms before the melting transition temperature appears.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Salata, O. V., Nanobiotechnology 2 (3), 16 (2004).Google Scholar
Nutt, M. O., Hughes, J. B. and Wong, M. S., Environ. Sci. Technol. 39 (5) 1346 (2005).CrossRefGoogle Scholar
Bala, I., Hariharan, S. and Kumar, M.N., Crit. Rev. Ther. Drug Carrier Syst. 21 (5), 387 (2004).CrossRefGoogle Scholar
Morones, J.R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Tapia-Ramírez, J., and José-Yacamán, M., Nanotechnology 16, 2346 (2005).CrossRefGoogle Scholar
Wu, M.-L., Chen, D.-H. and Huang, T.-C., Langmuir 17 (13), 3877 (2001).CrossRefGoogle Scholar
Fan, F.-R., Liu, D.-Y., Wu, Y.-F., Duan, S., Xie, Z.-X., Jiang, Z.-Y., and Tian, Z.-Q.. J. Am. Chem. Soc. 130, 6949 (2008).CrossRefGoogle Scholar
Chen, D.-H. and Chen, C.-J.. J. Mater. Chem. 12, 1557 (2002).CrossRefGoogle Scholar
Ferrando, R., Jellinek, J. and Johnston, R.L., Chem. Rev. 108, 845 (2008).CrossRefGoogle Scholar
Tajammul Hussain, S., Iqbal, M. and Mazhar, M., J. Nanopart. Res. 11, 1383 (2008).CrossRefGoogle Scholar
Qian, H. and Jin, R., Nano Lett. 9, 4083 (2009).CrossRefGoogle Scholar
Mariscal, M. M., Oviedo, O.A., Leiva, E.P.M., Mejía-Rosales, S. and José-Yacamán, M., Nanostructure Science and Technology 3 (26) (2013).CrossRefGoogle Scholar
Shim, J., Lee, B. and Cho, Y.W., Surface Science 512, 262 (2002).CrossRefGoogle Scholar
Shibuta, Y. and Suzuki, T., Chemical Physics Letters 445, 265 (2007).CrossRefGoogle Scholar
Shibuta, Y. and Suzuki, T., Chemical Physics Letters 498, 323 (2010).CrossRefGoogle Scholar
Montejano-Carrizales, J.M. and Morán-López, J.L., Nanostructured Materials 1, 397 (1992).CrossRefGoogle Scholar
Rafii-Tabar, H. and Sutton, A.P., Philosophical Magazine Letters 63, 217 (1991).CrossRefGoogle Scholar
Nosé, S., Molecular Physics 52, 255 (1984).CrossRefGoogle Scholar
Hoover, W.G., Phys. Rev. A 31, 1695 (1985).CrossRefGoogle Scholar
Mejía-Rosales, S. J., Fernaćndez-Navarro, C., Pérez-Tijerina, E., Montejano-Carrizales, J. M. and José-Yacamán, M., J. Phys. Chem. B 110, 12884 (2006).CrossRefGoogle Scholar
Chushak, Y. and Bartell, L.S., European Physical Journal D 16, 43 (2001).CrossRefGoogle Scholar
Pittaway, F, Paz-Borbón, L. O., Johnston, R. L., Arslan, H., Ferrando, R., Mottet, C., Barcaro, G., and Fortunelli, A., J. Phys. Chem. C 113, 9141 (2009).CrossRefGoogle Scholar