Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T12:16:18.883Z Has data issue: false hasContentIssue false

Effect of Diameter on Longitudinal Displacement in Disk Shape 10-μm-thick Lead Zirconate Titanate Films

Published online by Cambridge University Press:  26 February 2011

Takashi Iijima
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology, AIST,Tsukuba Central 2, Tsukuba, N/A, N/A, Japan
Satoko Osone
Affiliation:
Yoshiro Shimojo
Affiliation:
Hirotake Okino
Affiliation:
[email protected], National Defense Academy, Department of Communications Engineering, Japan
Takashi Yamamoto
Affiliation:
Get access

Abstract

Micro-machined piezoelectric film devices are usually fabricated onto substrates, so that the displacement response of the film is clamped with the substrate. To investigate the longitudinal displacement behavior of 10-μm-thick lead zirconate titanate (PZT) films deposited onto Si substrates, disk shape structures with diameters of 20 to 80-μm were fabricated by an reactive ion etching (RIE) process. The polarization-field (P-E) hysteresis curves did not show a remarkable difference with decreasing the PZT disk diameter. On the other hand, unipolar driven longitudinal displacement increased, and the amount of the displacement was saturated at a diameter of 30 and 20 μm. The AFM measured longitudinal piezoelectric constants, AFM d33, were estimated in the case of before poling and after poling at 100V for 10 min. The AFM d33 for the before and after poling process were 65 and 94 pm/V for 80-μm-diameter film disk, and 153 and 315 pm/V for 20-μm-diameter film disk, respectively. The value of poled AFM d33 for 20-μm-diameter film disk was comparable to bulk PZT ceramics. These results suggest that the decrease of the disk diameter reduces the Si substrate bending related with the clamping effect between the film and substrate, and facilitates domain reorientation in the poling process. It seems that the actual piezoelectric constant of films can be estimated from the longitudinal displacement when the ratio of the PZT disk diameter, d, to the PZT film thickness, t, shows d/t < 3 for 10-μm-thick PZT films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chen, H. D., Udayakumar, K. R., Cross, L. E., Bernstein, J. J. and Niles, L. C., J. Appl. Phys. 77, 3349 (1995).Google Scholar
2 Wakabayashi, S., Sakata, M., Goto, H., Takeuchi, M. and Yada, T., Jpn. J. Appl. Phys. 35, 5012 (1996).Google Scholar
3 Chen, H. D., Udayakumar, K. R., Gaskey, C. J., Cross, L. E., Bernstein, J. J. and Niles, L. C., J. Am. Cerm. Soc. 79, 2189 (1996).Google Scholar
4 Kanno, I., Fujii, S., Kamada, T. and Takayama, R., Appl. Phys. Lett. 70, 1378 (1997).Google Scholar
5 Ohba, Y., Miyauchi, M., Tsurumi, T. and Daimon, M., Jpn. J. Appl. Phys. 32, 4095 (1993).Google Scholar
6 Jeon, Y., Chung, J. and No, K., J. Electroceram. 4, 195 (2000).Google Scholar
7 Tsurumi, T., Ozawa, S., Abe, G., Ohashi, N., Wada, S. and Yamane, M., Jpn. J. Appl. Phys. 39, 5604 (2000).Google Scholar
8 Lebedev, M., Akedo, J. and Akiyama, Y., Jpn. J. Appl. Phys. 39, 5600 (2000).Google Scholar
9 Iijima, T., Matsuda, H., Hayashi, Y. and Onagawa, Jun, Trans. Mater. Res. Soc. Jpn. 27, 243 (2002).Google Scholar
10 Iijima, T., Ito, S., Matsuda, H., Dugnani, R. and Chang, F. K., Materials Transactions 40, 223 (2004).Google Scholar
11 Christman, J. A., Woolcott, R. R. Jr., kingon, A. I. and Nemanich, R. J., Appl. Phys. Lett. 73, 3851 (1998).Google Scholar
12 Iijima, T., Ito, S. and Matsuda, H., Jpn. J. Appl. Phys. 41, 6735 (2002).Google Scholar
13 Bale, M. and Palmer, R. E., J. Vac. Sci. Technol. B 19, 2020 (2001).Google Scholar
14 Uchino, K., in Piezoelectric Actuators and Ultrasonic Motors, ed. Tuller, H. L. (Kluwer Academic Publishers 1997) Chap. 3, p. 79.Google Scholar
15 Buehlmann, S., Dwir, B., Baborowski, J., and Muralt, P., Appl. Phys. Lett. 80, 3195 (2002).Google Scholar
16 Jaffe, B., Cook, W. R. Jr., and Jaffe, H., in Piezoelectric Ceramics (Academic Press, London, 1971) p. 146.Google Scholar
17 Okino, H., Matsuda, H., Iijima, T., Yokoyama, S., Funakubo, H., and Yamamoto, T., Mat. Res. Soc. Symp. Proc. 784 (2004) C11.29.Google Scholar