Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T09:52:05.930Z Has data issue: false hasContentIssue false

Effect of Characteristics of SrRuO3 Buffer Layer on the Ferroelectric Properties of (Pb0.97La0.30)(Zr0.66Ti0.34)O3 Thin Films

Published online by Cambridge University Press:  10 February 2011

Yu-Jen Chen
Affiliation:
Department of Materials Science and Engineering, Hsinchu, 300, Taiwan, R.O.C
Gwo Jamn
Affiliation:
Department of Materials Science and Engineering, Hsinchu, 300, Taiwan, R.O.C
Kuo-Shung Liu
Affiliation:
Department of Materials Science and Engineering, Hsinchu, 300, Taiwan, R.O.C
I-Nan Lina
Affiliation:
Materials Science Center, National Tsing-Hua University, Hsinchu, 300, Taiwan, R.O.C
Get access

Abstract

A two-step pulsed laser deposition (PLD) process, including PLD at a substrate temperature lower than 150°C and rapid-thermal-annealing (RTA) at around 550°C (30 s), has been successfully applied for growing (Pb0.97La0.03)(Zr0.66Ti0.034)0.9875O3, PLZT, thin films. Interdiffusion between layers is pronouncedly suppressed due to the presence of the SrRuO3 layer, which markedly improves the electrical properties of PLZT films. The PLZT films thus obtained exhibit large remanent polarization P,=19 µC/cm2 (with coercive force Ec=78 kV/cm), low leakage current density J11≤8 × 1O−6 A/cm2 (up to 400 kV/cm) and fatigue free characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Scott, J. F. and Araujo, C. A. P. de, Science 246, 1400 (1963.5).Google Scholar
2. Araujo, C. A. P. de, McMillan, L. D., Melnick, B. M., Cuchiaro, J. D. and Scott, J. F., Ferroelectric 104, 241 (1990).Google Scholar
3. Moazzami, R., Hu, C. and Shepherd, W. H., IEEE Trans. Elec. Devices 39, 2044 (1992).Google Scholar
4. Haertling, G. H., J. Vac. Sci. Technol. A, 9, 414 (1991).Google Scholar
5. Ramesh, R., Chan, W. K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J. M., Keramidas, V. G., Fork, D. K. and Lee, J., Safari, A., Appl. Phys. Lett. 61, 157 (1992).Google Scholar
6. Ramesh, R., Sands, T., Keramidas, V. G and Fork, D. K., Mater. Sci. Eng. B22, 283 (1994).Google Scholar
7. Hiratami, M., Okazaki, C., Imagawa, K. and Takagi, K. Jap. J. Appl. Phys. 5 (1996) 6212.Google Scholar
8. Wu, X. P., Foltyn, S. R., Dye, R. C., Coulter, Y., Muenchausen, R.E. Appl. Phys. Lett., 62 1993) 2434.Google Scholar
9. Watanabe, K., Ami, M. and Tanaka, M., Mater. Res. Bulletin 32 (1997) 83.Google Scholar
10. Jia, O. X., Wu, X. D., Foltyn, S. R. and Tiwari, P., Appl. Phys. Lett. 66 (1995) 2197.Google Scholar
11. Yang, C. C., Chen, M. S., Hong, T. J., Wu, C. M., Wu, J. M. and Wu, T. B., Appl. Phys. Lett. 66, 2643 (1995).Google Scholar
12. Tseng, T. F., Yang, R. P.. Liu, K. S. and Lin, I. N., Appl. Phys. Lett. 70, 46 (1997).Google Scholar
13. Liu, K.S., Tseng, T.F. and Lin, I.N., Appl. Phys. Lett. 72, 1182 (1998).Google Scholar
14. Tseng, Y. K., Liu, K.S., Jiang, J. D. and Lin, I. N., Appl. Phys. Lett. 72, 285 (1998).Google Scholar