Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T13:46:56.954Z Has data issue: false hasContentIssue false

Effect of Ceria Particle-Size Distribution and Pressure Interactions in Chemo-Mechanical Polishing (CMP) of Dielectric Materials

Published online by Cambridge University Press:  01 February 2011

Naga Chandrasekaran
Affiliation:
Micron Technology, Inc., 8000 S. Federal Way, P.O. Box 6 Boise, ID 83707, U.S.A.
Ted Taylor
Affiliation:
Micron Technology, Inc., 8000 S. Federal Way, P.O. Box 6 Boise, ID 83707, U.S.A.
Gundu Sabde
Affiliation:
Micron Technology, Inc., 8000 S. Federal Way, P.O. Box 6 Boise, ID 83707, U.S.A.
Get access

Abstract

Effect of ceria particle-size distribution and pressure interactions in CMP of dielectric materials and the subsequent surface generation mechanisms is investigated in detail. The removal rate is observed to correlate primarily with the slurry mean particle-size distribution (D50) and reach early rate saturation with decreasing particle size. Slurries with tighter particlesize distribution exhibit a logarithmic relationship with pressure, while a linear relationship is observed for wider distribution slurries. In contrast to the removal rate, surface roughness and degree of microscratches depend primarily on the tail distribution (D99) and increase with increasing particle size. The addition of a selective component to the slurry increases the rate differential between the slurries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Izumutani, T. in Treatise on Materials Science and Technology, edited by Tomozawa, M. and Doremus, R. (Academic Press, NY, 1979) p. 115.Google Scholar
2. Cook, L. M. J. of Non-Crystalline Solids 120, 152, (1990).Google Scholar
3. Jairath, R. Desai, M. Stell, M. Tolles, R. and Scherber-Brewer, D., Mat. Res. Soc. Symp. Proc. 337, 121 (1994).Google Scholar
4. Zhou, C. Shan, L. Hight, J. R. and Danyluk, S. J. Soc. Tribologists and Lubrication Engineers 8, 35 (2002).Google Scholar
5. Xie, Y. and Bhushan, B. Wear 200, 281 (1996).Google Scholar
6. Bielmann, M. Mahajan, U. and Singh, R. K. Electrochemical and Solids-State Letters 2, 401, (1999).Google Scholar
7. Kim, H. G. An, Y. M. Moon, D. K. and Park, J. G. Jpn, J. Appl. Phys. 39, 1085 (2000).Google Scholar
8. Basim, G. B. Adler, J. J. Mahajan, U. Singh, R. K. and Moudgil, B. M. J. Electrochemical Society 147 (9), 3523, (2000).Google Scholar
9. Zhou, C. Shan, L. Ng, S. H., Hight, R. Paszkowski, A. J. and Danyluk, S. Mat. Res. Soc. Symp. Proc. 671, M1.6.1, (2001).Google Scholar
10. Choi, K. S. Vacassy, R. Bassim, N. and Singh, R. K. Mat. Res. Soc. Symp. Proc. 671, M5.8.1., (2001).Google Scholar
11. Doyen, L. Vacher, D. Tarutani, K. Bouard, P. Picore, F. and Girard, D. Semiconductor International, (2002).Google Scholar
12. Park, J. G. Katoh, T. Park, J. H. Paik, U. and Kwack, K. D. Rare Metals 21, 6 (2002).Google Scholar
13. Palla, B. J. and Shah, D.O. J. Dispersion Science and Technology 21 (5), 491, (2000).Google Scholar
14. Luo, J. and Dornfeld, D. A. IEEE Transactions: Semiconductor Manufacturing 14 (2), 112, (2001).Google Scholar