Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T09:49:25.444Z Has data issue: false hasContentIssue false

The Effect of As-quenched Structure on Primary Phase Crystallization in Amorphous Aluminum Alloys

Published online by Cambridge University Press:  26 February 2011

Joseph Hamann
Affiliation:
[email protected], University of Wisconsin-Madison, Materials Science and Engineering, 1500 Engineering Drive, Madison, WI, 53706, United States
John H Perepezko
Affiliation:
[email protected], University of Wisconsin-Madison, Materials Science and Engineering, United States
Get access

Abstract

From the reported experience, primary nanocrystallization in amorphous Al alloys involves transient kinetic behavior that is sensitive to the initial as-quenched structural arrangements. In order to examine the precursor effects, systematic studies outlining the evolving growth kinetics of primary aluminum nanocrystals (nc) during pre-crystallization annealing treatments, and investigations on the microstructure refining effect of specific alloying substitutions represent new approaches for an analysis of primary phase crystallization kinetics. In Al88Ni8Sm4 melt-spun ribbon (MSR), incremental substitutions of Cu for Ni (0 − 1at%) affect the thermal stability of the material (crystallization onset shifts to lower temperature) and refine the size of the primary phase nanocrystals. However, continuous heating calorimetry measurements indicate that the primary crystallization enthalpy remains approximately constant with increased Cu substitution. From a structural analysis standpoint, quantitative microstructure examinations applied in parallel with calorimetry measurements have been employed to characterize the as-quenched volume of MSR samples. The increased primary Al nanocrystal particle density with Cu substitution reflects the modification of local structural arrangements, necessitating an understanding of the local structure of the as-quenched sample in order to develop a description of primary phase nanocrystal growth kinetics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Inoue, A., Acta Mat. 48, 279 (2000).Google Scholar
2 Inoue, A. et al. , Mat. Trans. JIM. 35, 92 (1994).Google Scholar
3 Hong, S.J., Warren, P.J., Chun, B.S., Mat. Sci. & Engr. A304–306, 362 (2001).Google Scholar
4 Zhang, Y., Warren, P.J., Cerezo, A., Mat. Sci. & Engr. A 327, 109 (2002).Google Scholar
5 Perepezko, J.H., Hebert, R.J., Tong, W.S., Hamann, J., Rösner, H.R., Wilde, G., Mat. Trans. 44, 1982 (2003).Google Scholar
6 Matsuura, M., Sakurai, M., Suzuki, K., Tsai, A.P., Inoue, A., Mat. Sci. & Engr. A226–228, 511 (1997).Google Scholar
7 Inoue, A., Sobu, S., Louzguine, D.V., Kimura, H., Sasamori, K., J. Mater. Res. 19, 1539 (2004).Google Scholar
8 Louzguine, D.V., Sobu, S., Inoue, A., Appl. Phys. Lett. 85, 3758 (2004).Google Scholar
9 Kelton, K.F., Croat, T.K., Gangopadhyay, A.K., Xing, L.Q., Greer, A.L., Weyland, M., Li, X., Rajan, K., J. Non-Cryst. Solids 317, 71 (2003).Google Scholar
10 Hono, K., Zhang, Y., Tsai, A.P., Inoue, A., Sakurai, T., Scripta Met. 32, 191 (1995).Google Scholar
11 Gloriant, T., Ping, D.H., Hono, K., Greer, A.L., Baró, M.D., Mat. Sci. & Eng. A304–306, 315, (2001).Google Scholar
12 Hono, K., Ping, D.H., Ohnuma, M., Onodera, H., Acta Mat. 47, 997 (1999).Google Scholar
13 Hamann, J., Tong, W.S., Perepezko, J.H., to be published.Google Scholar
14 Stratton, W.G., Hamann, J., Perepezko, J.H., Voyles, P.M., private communication.Google Scholar