Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T06:59:55.424Z Has data issue: false hasContentIssue false

Dynamic Structural and Chemical Responses of Energetic Solids

Published online by Cambridge University Press:  12 January 2012

Haoyan Wei
Affiliation:
Department of Chemistry and Institute for Shock Physics, Washington State University, Pullman, WA 99164, U.S.A.
Choong-Shik Yoo
Affiliation:
Department of Chemistry and Institute for Shock Physics, Washington State University, Pullman, WA 99164, U.S.A.
Get access

Abstract

Understanding the dynamic responses of energetic materials is central to evaluating the energetic and chemical performance as well as development of novel energetic solids. These include thermal, mechanical and chemical processes in a relevant temporal (ns-to-μs) and spatial (atomistic-to-micro) scales. In this paper, we describe our recent developments of time-resolved characterization techniques capable of probing real-time structural and chemical evolutions across single event, metal combustions and intermetallic reactions. The methods utilize highspeed microphotography, spectro-pyrometry, and synchrotron x-ray powder diffraction and determine in-situ the particle sizes, temperatures and structures in μs time resolution. These timeresolved data provide insights into the fragmentation dynamics, thermal history, phase transitions, reaction mechanisms, and chemical kinetics governing these exothermic metal combustions and intermetallic reactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Molodetsky, I. E., Dreizin, E. L. and Law, C. K., Symp. (Int.) Combust. 26, 1919 (1996).Google Scholar
2. Blobaum, K. J., Van Heerden, D., Gavens, A. J. and Weihs, T. P., Acta Mater. 51, 3871 (2003).Google Scholar
3. Bernard, F., Gaffet, E., Gramond, M., Gailhanou, M. and Gachon, J. C., J. Synchrotron Radiat. 7, 27 (2000).Google Scholar
4. Smith, G. D., Hutson, M. S., Lu, Y., Tierney, M. T., Grinstaff, M. W. and Palmer, R. A., Appl. Spectrosc. 55, 637 (2001).Google Scholar
5. Mcpherson, A., Wang, J., Lee, P. L. and Mills, D. M., J. Synchrotron Radiat. 7, 1 (2000).Google Scholar
6. Wei, H. and Yoo, C. S., J. Appl. Phys., in press.Google Scholar
7. Fincke, J. R., Swank, W. D., Jeffery, C. L. and Mancuso, C. A., Meas. Sci. Technol. 4, 559 (1993).Google Scholar
8. Noguchi, T. and Kozuka, T., Sol. Energy 10, 125 (1966).Google Scholar
9. Yoo, C. S., Wei, H., Chen, J.-Y., Shen, G., Chow, P. and Xiao, Y., Rev. Sci. Instrum. 82, 113901 (2011).Google Scholar
10. Trenkle, J. C., Koerner, L. J., Tate, M. W., Walker, N., Gruner, S. M., Weihs, T. P. and Hufnagel, T. C., J. Appl. Phys. 107, 113511 (2010).Google Scholar
11. Fadenberger, K., Gunduz, I. E., Tsotsos, C., Kokonou, M., Gravani, S., Brandstetter, S., Bergamaschi, A., Schmitt, B., Mayrhofer, P. H., Doumanidis, C. C. and Rebholz, C., Appl. Phys. Lett. 97, 144101 (2010).Google Scholar
12. Wei, H., Yoo, C.-S., Chen, J.-Y. and Shen, G., in preparation.Google Scholar
13. Kovalev, D., Shkiro, V. and Ponomarev, V., Int. J. Self Propag. High Temp. Synth. 16, 169 (2007).Google Scholar