Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T13:23:53.219Z Has data issue: false hasContentIssue false

Dynamic Infrared Electro-optic Response of Soluble Organic Semiconductors in Thin Film Transistors

Published online by Cambridge University Press:  25 January 2013

Emily G. Bittle
Affiliation:
Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055USA
Joseph W. Brill
Affiliation:
Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055USA
Joseph P. Straley
Affiliation:
Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055USA
Get access

Abstract

We use a frequency-dependent electro-optic technique to measure the hole mobility in small molecule organic semiconductors, such as 6,13 bis(triisopropylsilylethynyl)-pentacene. Measurements are made on semiconductor films in bottom gate, bottom contact field-effect transistors (FETs.) Because of the buried metal layer effect the maximum response, due to absorption in the charge layer, will be for a dielectric film ∼ 1/4 of a wavelength (in the dielectric) (e.g. ∼ 1 micron thick in the infrared.) Results are presented for FETs prepared with both spin-cast polymer and alumina dielectrics prepared by atomic layer deposition. At low frequencies the results are fit to solutions to a non-linear differential equation describing the spatial dependence of flowing charge in the FET channel, which allows us to study multiple crystals forming across one set of drain-source contacts. FETs prepared on alumina dielectrics show interesting deviations from the model at high frequencies, possibly due to increased contact impedance.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bittle, E. G., Brill, J. W., and Anthony, J. E., Appl. Phys. Lett., 97, 013302, (2010)CrossRefGoogle Scholar
Li, Z. Q., Wang, G. M., Sai, N., Moses, D., Martin, M. C., DiVentra, M., Heeger, A. J., and Basov, D. N., Nano Letters, 6, 224228, (2006)CrossRefGoogle Scholar
Manaka, T., Kawashima, S., and Iwamoto, M., Appl. Phys. Lett., 97, 113302 (2010)CrossRefGoogle Scholar
Meyertholen, A. D., Li, Z. Q., Basov, N., Fogler, M. M., Martin, M. C., Wang, G. M., Dhoot, A. S., Moses, D., and Heeger, A. J., Appl. Phys. Lett., 90, 222108 (2007)CrossRefGoogle Scholar
Sciascia, C., Martino, N., Schuettfort, T., Watts, B., Grancini, G., Antognazza, M. R., Zavelani-Rossi, M., McNeill, C. R., and Caironi, M., Adv. Mater., 23, 50865090 (2011)CrossRefGoogle Scholar
Matsui, H. and Hasegawa, T., Appl. Phys. Lett., 95, 223301 (2009)Google Scholar
Anthony, J. E., Brooks, J. S., Eaton, D. L., and Parkin, S. R., J. Am. Chem. Soc., 123, 94829483 (2001).CrossRefGoogle Scholar
Bittle, E. G., Brill, J. W., and Straley, J. P., J. Appl. Phys., 112, 094507 (2012).CrossRefGoogle Scholar
Chen, J., Tee, C. K., Shtein, M., Martin, D. C., and Anthony, J., Organic Electronics, 10, 696703, 2009.CrossRefGoogle Scholar
Bao, Z. and Locklin, J. J., Eds., Organic Field-Effect Transistors.: (CRC Press, 2007) pp. 112115.CrossRefGoogle Scholar
Veres, J., Ogier, S., and Lloyd, G., Chem. Mater., 16, 4543 (2004)CrossRefGoogle Scholar
Li, T., Ruden, P. P., Campbell, I. H., and Smith, D. L., J. Appl. Phys., 93, 40174022 (2003)CrossRefGoogle Scholar