Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T23:35:25.524Z Has data issue: false hasContentIssue false

Dye Sensitized Solar Cells Incorporating Polyelectrolyte Multilayer Composites

Published online by Cambridge University Press:  01 February 2011

Geoffrey M. Lowman
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge, MA 02139, U.S.A.
Hiroaki Tokuhisa
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge, MA 02139, U.S.A.
Jodie L. Lutkenhaus
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge, MA 02139, U.S.A.
Paula T. Hammond
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge, MA 02139, U.S.A.
Get access

Abstract

Dye sensitized solar cells (DSSC's) are constructed using TiO2 electrodes synthesized by aqueous liquid phase deposition in combination with microcontact printing techniques or porous thin film template methods. Layer-by-layer deposition of polyelectrolytes is used to produce an ionic conducting solid-state electrolyte thin film, which is enhanced by post-processing in oligoethylene glycol diacid (OEGDA). The impact of TiO2 film architecture, as well as the thin film electrolyte, on device performance is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. O'Regan, B. and Grätzel, M., Nature 353, 737 (1991).Google Scholar
2. Tennakone, K., Senadeera, G.K.R., Perera, V.P.S. et al., Chem. Mater. 11 (9), 2474 (1999);Google Scholar
Nogueira, A.F., Durrant, J.R., and DePaoli, M.A., Adv. Mater. 13 (11), 826 (2001);Google Scholar
Stathatos, E., Lianos, P., Lavrencic-Stangar, U. et al., Adv. Mater. 14, 354 (2002).Google Scholar
3. Wang, P., Zakeeruddin, S.M., Comte, P. et al., J. Am. Chem. Soc. 125 (5), 1166 (2002);Google Scholar
Wang, P., Zakeeruddin, S.M., Moser, J.E. et al., Nature Mater. 2 (6), 402 (2003).Google Scholar
4. Coakley, K.M., Liu, Y., McGehee, M.D. et al., Adv. Funct. Mater. 13 (4), 301 (2003).Google Scholar
5. Bach, U., Lupo, D., Comte, P. et al., Nature 395, 583 (1998).Google Scholar
6. Decher, G. and Hong, J.D., Makromol. Chem., Marcromol. Symp. 46, 321 (1991).Google Scholar
7. DeLongchamp, D.M. and Hammond, P.T., Chem. Mater. 15 (5), 1165 (2003).Google Scholar
8. Tokuhisa, H. and Hammond, P.T., Langmuir 20, 1436 (2004).Google Scholar
9. Deki, S. and Aoi, Y., J. Mater. Res. 13 (4), 883 (1998).Google Scholar
10. Mendelsohn, J.D., Barrett, C.J., Chan, V.V. et al., Langmuir 16, 5017 (2000).Google Scholar
11. Kubo, W., Kambe, S., Nakade, S. et al., J. Phys. Chem. B 107 (18), 4374 (2003).Google Scholar
12. Tokuhisa, H. and Hammond, P.T., Adv. Funct. Mater. 13 (11), 831 (2003).Google Scholar
13. Lowman, G.M., Tokuhisa, H., Lutkenhaus, J.L. et al., Langmuir 20, 9791 (2004).Google Scholar
14. Takenaka, S., Maehara, Y., Imai, H. et al., Thin Solid Films 438–439, 346 (2003).Google Scholar