Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T03:08:44.523Z Has data issue: false hasContentIssue false

Dual Ion Beam Sputter Deposition of Cdte, Hgte and Hgcdte Films

Published online by Cambridge University Press:  25 February 2011

S. V. Krishnaswamy
Affiliation:
Westinghouse R&D Center, 1310 Beulah Road, Pittsburgh, PA 15235
J. H. Rieger
Affiliation:
Westinghouse R&D Center, 1310 Beulah Road, Pittsburgh, PA 15235
N. J. Doyle
Affiliation:
Westinghouse R&D Center, 1310 Beulah Road, Pittsburgh, PA 15235
M. H. Francombe
Affiliation:
Westinghouse R&D Center, 1310 Beulah Road, Pittsburgh, PA 15235
Get access

Abstract

Experiments have been performed to assess the feasibility of using ionbeam sputter deposition for the growth of CdTe, HgTe and HgCdTe films. Some simple cryogenically cooled dual-target configurations have been employed in an investigation of epitaxial growth on CdTe substrates. Good-quality epitaxy was achieved for CdTe at temperatures down to 140°C, and for HgTe and HgCdTe at temperatures extending to below 50° C.Based upon compositional and phase analyses, and upon IR absorption measurements, we conclude that, using an excess Hg flux, stoichiometric transfer of the HgCdTe target composition to the substrate is approximately obtained. However, some departure from stoichiometry is produced at higher substrate temperatures (> 150”C) due to thermal re-evaporation of Hg, and under high sputtered Hg fluxes due to selective re-sputtering of HgTe. The good structural quality and excellent compositional uniformity of the films indicate that ion-beam sputter deposition may be suitable for low-temperature processing of IR detector structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bratt, P. R., J. Vac. Sci. Technol., A 1: 1687 (1983).Google Scholar
2. McGill, T. C., Wu, G. Y., and Hetzler, S. R., J. Vac. Sci. Technol., A 4(4), 2091 (1986).CrossRefGoogle Scholar
3. Arch, D. K., Faurie, J. P., Staudenmann, J. L., Hibbs-Brenner, H., and Chow, P., J. Vac. Sci. Technol. A 4(4), 2101 (1986).Google Scholar
4. Faurie, J. P., Boukerche, M., Reno, J., Sivananthan, S. and Hsu, C., J. Vac. Sci. Technol., A 3(1): 55 (1985).Google Scholar
5. Cheung, J. T. and Cheung, D. T., J. Vac. Sci. Technol., 21: 182 (1982).Google Scholar
6. Irvine, S.J.C., Mullin, J. B., and Tunnicliffe, J., J. Cryst. Growth, 68: 188 (1984).Google Scholar
7. Rousille, R., Amingual, D., Corh, R., Destefanis, G. L. and Tissot, J. L., Appl. Phys. Lett., 44: 679 (1984).Google Scholar
8. Krishnaswamy, S. V., Takei, W. J., and Francombe, M. H., J. Vac. Sci. Technol. A 4(3), 849 (1986).Google Scholar
9. Krishnaswamy, S. V., Rieger, J. H., Doyle, N. J., and Francombe, M. H., J. Vac. Sci. Technol. A 5, 1987.Google Scholar
10. Monfroy, G., Sivanathan, S., Chu, X., Faurie, J. P., Knox, R. D., and Staudenmann, J. L., Appl. Phys. Letts. 49:152 (1986).Google Scholar
11. Feng, Z. C., Mascarenhas, A., Choyke, W. J., Farrow, R. F. C., Shirland, F. A., and Takei, W. J., Appl. Phys. Lett., 47:25 (1985).Google Scholar