No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
Calcium phosphate phases such as hydroxyapatite (HAP) and octacalcium phosphate (OCP) have long been considered as model systems for biological minerals. Moreover such phases are involved in ceramic and plasma coated titanium (HPCTI) prosthetic devices. Most of these mineral preparations are mixtures of calcium phosphate phases, as evidenced by X-ray analysis. However, many mineralizing systems involve the formation of metastable intermediates which may subsequently undergo phase transformations. There is therefore considerable interest in investigating the simultaneous growth and dissolution of multiple mineral phases. Based on the Constant Composition (CC) method, the new Dual Constant Composition (DCC) technique has been developed for kinetics studies of the dissolution of the mixed calcium phosphate phases frequently encountered in-ceramic and plasma coated apatite surfaces.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.