Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-07T23:57:31.148Z Has data issue: false hasContentIssue false

Dry Etch Damage In InN, InGaN and InAIN

Published online by Cambridge University Press:  15 February 2011

S. J. Pearton
Affiliation:
University of Florida, Gainesville, FL 32611
J. W. Lee
Affiliation:
University of Florida, Gainesville, FL 32611
J. D. MacKenzie
Affiliation:
University of Florida, Gainesville, FL 32611
C. B. Vartuli
Affiliation:
University of Florida, Gainesville, FL 32611
S. M. Donovan
Affiliation:
University of Florida, Gainesville, FL 32611
C. R Abernathy
Affiliation:
University of Florida, Gainesville, FL 32611
R. J. Shul
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185
F. Ren
Affiliation:
Lucent Technologies, Bell Laboratories, Murray Hill NJ 07074
J. R. Lothian
Affiliation:
Lucent Technologies, Bell Laboratories, Murray Hill NJ 07074
Get access

Abstract

Damage introduction in III-V nitrides during dry etching can be simulated by exposingthe samples to pure Ar plasmas for study of the physical (ion-bombardment) effects.Changes in conductivity of InN, In0.5Ga 0.5N and In0.5Al0.5N layers exposed to Ar plasmasunder both Electron Cyclotron Resonance and reactive ion etching conditions have beenmeasured as a function of rfpower, pressure and exposure time. The combination of highmicrowave and high rf powers produces large increases (10-_104 times) in sheet resistanceof the nitrides, but conditions more typical of real etching processes (rf power < 150W) donot change the bulk electrical properties. The nitrides are more resistant to damageintroduction than other III-V semiconductors. The removal of damage-related trapsoccurs with an activation energy of ∼2.7eV. High ion currents during ECR etching canproduce substantial conductivity changes, whereas the lower currents under RIEconditions do not affect the nitrides. It is difficult to avoid preferential loss of N in thenear-surface of these materials, which leads to leakage currents in rectifying metal contactsdeposited on these surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Mukai, T. and Senoh, M., Appl. Phys. Lett. 64 1687 (1994)Google Scholar
2. Binari, S. C., Rowland, L. B., Kruppa, W., Kelner, G., Doverspike, K. and GaskilU, D. K., Electron. Lett. 30 1248 (1994)Google Scholar
3. Khan, M. A., Bhattarai, A., Kuznia, J. N. and Olsen, D. T., Appl. Phys. Lett. 63 1214 (1993)Google Scholar
4. Adesida, I., Mahajan, A., Andideh, E., Khan, M. A., Olsen, D. T. and Kuznia, J. N., Appl. Phys. Lett. 63 2777 (1993)Google Scholar
5. Pearton, S. J., Abernathy, C. R. and Ren, F., Appl. Phys. Lett. 64 2294 (1994)Google Scholar
6. Lin, M. E., Fan, Z., Ma, Z., Allen, L. H. and Morkoe, H., Appl. Phys. Lett. 64 887 (1994)Google Scholar
7. Shul, R. J., Kilcoyne, S. D., Hagerott-Crawford, M., Parmeter, J. E., Vartuli, C. B., Abernathy, C. R. and Pearton, S. J., Appl. Phys. Lett. 66 1761 (1995)Google Scholar
8. McLane, G. F., Casas, L., Pearton, S. J. and Abernathy, C. R., Appl. Phys. Lett. 66 3328 (1995)Google Scholar
9. Abernathy, C. R., J. Vac. Sci. Technol. A11 889 (1993)Google Scholar
10. Tansley, T. L. and Egan, R. J., Phys. Rev. B 45 10942 (1993)Google Scholar
11. Abernathy, C. R., Mackenzie, J. D., Bharatan, S. R., Jones, K. S. and Pearton, S. J., Appl. Phys. Lett. 66 1632 (1995)Google Scholar
12. Pearton, S. J., Ren, F., Abernathy, C. R., Hobson, W. S., Fullowan, T. R., Esaqui, R. and Lothian, J. R., Appl. Phys. Lett. 61 586 (1992)Google Scholar
13. Seaward, K. L. and Moll, N. J., J. Vac. Sci. Technol. B 10 46 (1992)Google Scholar
14. Pearton, S. J., Mat. Sci. Eng. 4 313 (1990).Google Scholar