Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T10:58:59.709Z Has data issue: false hasContentIssue false

Doping of GaN by ion implantation

Published online by Cambridge University Press:  21 March 2011

Eduardo J. Alves
Affiliation:
Instituto Tecnológico e Nuclear, EN 10, 2686-953 Sacavém, Portugal Universidade da Lisboa, CFN, Av. Gama Pinto 2, 1649-003 Lisboa, Portugal
C. Liu
Affiliation:
Instituto Tecnológico e Nuclear, EN 10, 2686-953 Sacavém, Portugal Universidade da Lisboa, CFN, Av. Gama Pinto 2, 1649-003 Lisboa, Portugal
Maria F. da Silva
Affiliation:
Instituto Tecnológico e Nuclear, EN 10, 2686-953 Sacavém, Portugal Universidade da Lisboa, CFN, Av. Gama Pinto 2, 1649-003 Lisboa, Portugal
José C. Soares
Affiliation:
Instituto Tecnológico e Nuclear, EN 10, 2686-953 Sacavém, Portugal Universidade da Lisboa, CFN, Av. Gama Pinto 2, 1649-003 Lisboa, Portugal
Rosário Correia
Affiliation:
Universidade da Aveiro, Dept. Física, 3810-193 Aveiro, Portugal
Teresa Monteiro
Affiliation:
Universidade da Aveiro, Dept. Física, 3810-193 Aveiro, Portugal
Get access

Abstract

In this work we report the structural and optical properties of ion implanted GaN. Potential acceptors such as Ca and Er were used as dopants. Ion implantation was carried out with the substrate at room temperature and 550 °C, respectively. The lattice site location of the dopants was studied by Rutherford backscattering/channeling combined with particle induced X-ray emission. Angular scans along both [0001] and [1011] directions show that 50% of the Er ions implanted at 550 oC occupy substitutional or near substitutional Ga sites after annealing. For Ca we found only a fraction of 30% located in displaced Ga sites along the [0001] direction. The optical properties of the ion implanted GaN films have been studied by photoluminescence measurements. Er- related luminescence near 1.54 μm is observed under below band gap excitation at liquid helium temperature. The spectra of the annealed samples consist of multiline structures with the sharpest lines found in GaN until now. The green and red emissions were also observed in the Er doped samples after annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Akasaki, I., Amano, H., Kito, M., and Hiramatsu, K., J. Lumin. 48/49, 666 (1991).Google Scholar
2. Wilson, R. G., Schwartz, R. N., Abernathy, C. R., Pearton, S. J., Newman, N., Rubin, M., Fu, T., and Zavada, J. M., Appl. Phys. Lett. 65, 992 (1994).Google Scholar
3. Strite, S., Jpn. J. Appl. Phys. 33, L699 (1994).Google Scholar
4. Zolper, J. C., Wilson, R. G., Pearton, S. J., and Stall, R. A., Appl. Phys. Lett. 68, 1945 (1996).Google Scholar
5. Kobayashi, H. and Gibson, W. M., Appl. Phys. Lett. 74, 2355 (1999).Google Scholar
6. Alves, E., Silva, M. F. da, Soares, J. C., Bartels, J., Vianden, R., Abernathy, C.R., Pearton, S. J., MRS Internet J. Nitride Semicond. Res. 4S1, G11.2 (1999).Google Scholar
7. Steckl, A. J. and Birkhahn, R., Appl. Phys. Lett. 73, 1702 (1998).Google Scholar
8. Steckl, A. J. and Zavada, J. M., MRS Bull. 24(9), 33 (1999).Google Scholar
9. Liu, C., Wenzel, A., Volz, K., and Rauschenbach, B., Nucl. Instr. Meth. B 148, 396 (1999).Google Scholar
10. Pankove, J. I., Hutchby, J. A., J. Appl. Phys. 47, 5387 (1976).Google Scholar
11. Alves, E., Monteiro, T., Soares, J., Santos, L., Silva, M. F. da, Soares, J. C., Lojkowski, W., Kolesnikov, D., Mat. Sci. Eng. B (to be published).Google Scholar