Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-07T22:56:49.482Z Has data issue: false hasContentIssue false

Doping and Electrochemical Capacitance of Carbon Nanotube-Polypyrrole Composite Films

Published online by Cambridge University Press:  15 March 2011

Mark Hughes
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK
George Z. Chen
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK
Milo S. P. Shaffer
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK
Derek J. Fray
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK
Alan H. Windle
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK
Get access

Abstract

Composite films were electrochemically synthesised via the simultaneous deposition of multiwalled nanotubes and polypyrrole, a conducting polymer. Negatively charged functional groups attached to the surface of the acid treated nanotubes enables the tubes to act as a dopant for the PPy in these films. Scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy revealed that the nano-porous three-dimensional arrangement of PPy coated MWNTs in these films produced specific capacitances per mass and geometric area as high as 192 F g-1 and 1.0 F cm-2, respectively. This value of specific capacitance per geometric area exceeds that of both component materials and other carbon nanotube-conducting polymer composites. The composite films described in this report were also able to charge and discharge more than an order of magnitude faster than similarly prepared pure PPy films. The nano-porosity and small diffusion distances within the composite films, crucial to achieving the superior capacitive performance, were found to be dependent on the concentration of nanotubes and additional dopant anions in the polymerisation electrolyte, offering possibilities for tailoring of the composite structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hughes, M., Chen, G. Z., Shaffer, M. S. P., Fray, D. J., Windle, A. H., Chem. Mater. Accepted.Google Scholar
[2] Jurewicz, K., Delpeux, S., Bertagna, V., Beguin, F., Frackowiak, E., Chem. Phys. Lett. 347, 36, (2001).Google Scholar
[3] Frackowiak, E., Jurewicz, K., Delpeux, S., Beguin, F., J. Power Sources 97–8, 822, (2001).Google Scholar
[4] Downs, C., Nugent, J., Ajayan, P. M., Duquette, D. J., Santhanam, S. V., Adv. Mater. 11, 1028, (1999).Google Scholar
[5] Coleman, J. N., Curran, S., Dalton, A. B., Davey, A. P., McCarthy, B., Blau, W., Barklie, R. C., Phys. Rev. B 58, R7492, (1998).Google Scholar
[6] Curran, S. A., Ajayan, P. M., Blau, W. J., Carroll, D. L., Coleman, J. N., Dalton, A. B., Davey, A. P., Drury, A., McCarthy, B., Maier, S., Strevens, A., Adv. Mater. 10, 1091, (1998).Google Scholar
[7] Yoshino, K., Kajii, H., Araki, H., Sonoda, T., Take, H., Lee, S., Fullerene Sci. Technol. 7, 695, (1999).Google Scholar
[8] Fan, J. H., Wan, M. X., Zhu, D. B., Chang, B. H., Pan, Z. W., Xe, S. S., J. Appl. Polym. Sci. 74, 2605, (1999).Google Scholar
[9] Frackowiak, E., Beguin, F., Carbon 39, 937, (2001).Google Scholar
[10] Chen, G. Z., Shaffer, M. S. P., Coleby, D., Dixon, G., Zhou, W. Z., Fray, D. J., Windle, A. H., Adv. Mater. 12, 522, (2000).Google Scholar
[11] Gao, M., Huang, S. M., Dai, L. M., Wallace, G., Gao, R. P., Wang, Z. L., Angew. Chem.-Int. Edit. 39, 3664, (2000).Google Scholar
[12] Chen, J. H., Huang, Z. P., Wang, D. Z., Yang, S. X., Wen, J. G., Ren, Z. R., Appl. Phys. A-Mater. Sci. Process. 73, 129, (2001).Google Scholar
[13] Shaffer, M. S. P., Fan, X., Windle, A. H., Carbon 36, 1603, (1998).Google Scholar
[14] Albery, W. J., Chen, Z., Horrocks, B. R., Mount, A. R., Wilson, P. J., Bloor, D., Monkman, A. T., Elliott, C. M., Faraday Discuss. 88, 247, (1989).Google Scholar
[15] Mastragostino, M., Arbizzani, C., Paraventi, R., Zanelli, A., J. Electrochem. Soc. 147, 407, (2000).Google Scholar
[16] Smela, E., Kallenbach, M., Holdenried, J., J. Microelectromech. Syst. 8, 373, (1999).Google Scholar
[17] Niu, C. M., Sichel, E. K., Hoch, R., Moy, D., Tennent, H., Appl. Phys. Lett. 70, 1480, (1997).Google Scholar
[18] DellaSanta, A., DeRossi, D., Mazzoldi, A., Synthetic Met. 90, 93, (1997).Google Scholar