Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T10:37:11.775Z Has data issue: false hasContentIssue false

Dislocation-induced spatial alignment of self-assembled InAs/GaAs quantum dots

Published online by Cambridge University Press:  11 February 2011

H. S. Lee
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373–1 Guseong-dong, Yuseong-gu, Daejeon 305–701, Korea
J. Y. Lee
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373–1 Guseong-dong, Yuseong-gu, Daejeon 305–701, Korea
T. W. Kim
Affiliation:
Department of Physics, Kwangwoon University, 447–1 Wolgye-dong, Nowoon-gu, Seoul 139–701, Korea
Y. J. Park
Affiliation:
Semiconductor Materials Laboratory, Nano Device Research Centre, Korea Institute of Science and Technology (KIST), P.O. Box 131, Cheongryang, Seoul 130–650, Korea
Get access

Abstract

We have studied the alignment of self-assembled InAs quantum dots (QDs) grown by molecular beam epitaxy using misfit dislocations generated due to the strained InxGa1-xAs/GaAs superlattice system. Structural characteristics of aligned SAQDs have been investigated by using atomic force microscopy (AFM) and transmission electron microscopy (TEM) measurements. AFM and TEM images showed that vertical stacked InAs QD arrays were aligned along <110> direction on the controlled strained layer. The anisotropic alignments along the [110] and [110] directions are closely related with the anisotropy of strain-relief for both directions, which affect the anisotropic diffusivity of indium adatoms on the strained superlattice layer. The strong alignment appears on the highly strained layer. These results indicate that aligned InAs quantum dots formed by changing the periods of strained superlattice hold promise for potential applications in nanoelectronic devices, such as single electron tunneling devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kamath, K., Bhattacharya, P., Sosnowski, T., Norris, T., and Phillips, J., Electron. Lett. 32, 1374 (1996).Google Scholar
Sugiyama, Y., Nakata, Y., Muto, S., Futatsugi, T., and Yokoyama, N., IEEE J. Sel. Top.Quantum Electron. 4, 880 (1998).Google Scholar
Petternsson, H., Baath, L., Carlsson, N., Seifert, W., and Samuelson, L., Appl. Phys. Lett. 79, 78 (2001).Google Scholar
4. Grundmann, M., Christen, J., Ledentsov, N. N., Bohrer, J., Bimberg, D., Ruvimov, S. S., Werner, P., Richter, U., Gosele, U., Heydenreich, J., Ustinov, V. M., Egorov, A. Yu., Zhukov, A. E., Kop'ev, P. S., and Alferov, Zh. I., Phys. Rev. Lett. 74, 4043 (1995).Google Scholar
5. Heinrichsdorff, F., Mao, M. H., Kirstaedter, N., Krost, A., Bimberg, D., Losogov, A. O., and Werner, P., Appl. Phys. Lett. 71, 22 (1997).Google Scholar
6. Lee, H. S., Lee, J. Y., Kim, T. W., Choo, D. C., Kim, M. D., Seo, S. Y., and Shin, J. H., J. Cryst. Growth 241, 63 (2002).Google Scholar
7. Kohmoto, S., Nakamura, H., Ishikawa, T., and Asakawa, K., Appl. Phys. Lett. 75, 3488 (1999).Google Scholar
8. Hyon, C. K., Choi, S. C., Song, S. H., Hwang, S. W., Son, M. H., Ahn, D., Park, Y. J., and Kim, E. K., Appl. Phys. Lett. 77, 2067 (2000).Google Scholar
9. Leon, R., Okuno, J. O., Lawton, R. A., Stevens-Kalceff, M., Phillips, M. F., Zou, J., Cockayne, D. J. H., and Lobo, C., Appl. Phys. Lett. 74, 2301 (1999).Google Scholar
10. Ishida, S., Arakawa, Y., and Wada, K., Appl. Phys. Lett. 72, 800 (1998).Google Scholar
11. Shiryaev, S. Yu., Jensen, F., Lundsgaard Hansen, J., Wulff Petersen, J., and Nylandsted Larsen, A., Phys. Rev. Lett. 78, 503 (1997).Google Scholar
12. Park, Y. J., Kim, K. M., Park, Y. M., and Kim, E. K., Current Applied Physics 1, 187 (2001).Google Scholar
13. Hausler, K., Eberl, K.. Noll, F., and Trampert, A., Phys. Rev. B 54, 4913 (1996).Google Scholar
14. Andrew, A. M., Romanov, A. E., Speck, J. S., Bobeth, M., and Pompe, W., Appl. Phys. Lett. 77, 3740 (2000).Google Scholar
15. Chang, K. H., Gibala, R., Strolovitz, D. J., Bhattacharya, P. K., and Mansfield, J. F., J. Appl. Phys. 67, 4093 (1990).Google Scholar