Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T23:04:07.874Z Has data issue: false hasContentIssue false

Dislocation Processes and Deformation Behavior in <001>-Oriented FeX-Ni60–X-Al40 Single Crystals

Published online by Cambridge University Press:  21 March 2011

P. S. Brenner
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210
R. Srinivasan
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210
R. D. Noebe
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210
T. Lograsso
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210
M. J. Mills
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210
Get access

Abstract

The mechanical properties and dislocation microstructure of single crystals with a range of compositions within the Fex-Ni60–x-Al40 pseudobinary system have been investigated, with the purpose of bridging the behavior from FeAl to NiAl. Experiments are focused on the compression testing of <001> oriented single crystals with compositions where x = 10, 20, 30, 40, and 50 (in atomic percent). Observations of a<111> dislocation morphologies at room temperature and both a<111> and non-a<111> dislocation activity at elevated temperatures are reported and discussed. Measurements of the yield strength, elastic modulus and strain hardening rates are reported, and the variation of strength with composition is correlated with dislocation dissociation and overall dislocation morphology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

NASA Glenn Research Center, Cleveland Ohio 44135

**

111A Metals Development, Ames Laboratory, Ames, IA 50011

References

REFERENCES

1. Miracle, D.B., Acta Metall Mater, 41, 649 (1993).Google Scholar
2. Noebe, R.D., Bowman, R. R. and Nathal, M. V., Int. Mater. Rev. 38, 193 (1993).Google Scholar
3. Baker, I. and Munroe, P. R., Int. Mater. Rev. 42, 181 (1997).Google Scholar
4. Nagpal, P. and Baker, I., Metall. Trans. A, 21A, 2281 (1990).Google Scholar
5. Patrick, D. K., Chang, K. M., Miracle, D. B. and Lipsitt, H. A., MRS Proceedings, 213, 267 (1991).Google Scholar
6. Pike, L. M. Jr, PhD. Thesis, University of Wisconsin-Madison, (1997).Google Scholar
7. Pike, L. M., Chang, Y. A. and Liu, C. T., Intermetallics, 5, 601 (1997).Google Scholar
8. Noebe, R. D., NASA TM 106534 (1992).Google Scholar
9. Yoshimi, K., Hanada, S., and Yoo, M. H., Acta metall. mater. 43, 4141 (1995).Google Scholar
10. Brenner, P. S., M. S. Thesis, The Ohio State University (2000).Google Scholar
11. Schneibel, J.H., Munroe, P.R., and Pike, L.M., Materials Research Society, 460, (1996).Google Scholar
12. Pascoe, R. T. and Newey, C.W.A., Metal Sci. J. 5, 50 (1971).Google Scholar
13. Loretto, M. H. and Wasilewski, R. J., Phil. Mag. 23, 1311 (1971).Google Scholar
14. Kim, J. T., PhD. Thesis, University of Michigan (1990).Google Scholar
15. George, E. P. and Baker, I., Phil. Mag. A 77, 737 (1998).Google Scholar
16. Honeycomb, R. W. K., The Plastic Deformation of Metals (Edward Arnold, London, 1984).Google Scholar
17. Fleischer, L., Acta metall., 9, 996 (1963).Google Scholar
18. Crimp, M.A. and Vedula, K.M., Phil. Mag. A., 63, 559 (1991).Google Scholar
19. Savage, M. F., Srinivasan, R., Daw, M. S., Lograsso, T. A. and Mills, M. J., Mater. Sci. and Eng. A 258, 20 (1998).Google Scholar
20. Srinivasan, R., Brown, J., Daw, M. S., Noebe, R. D. and Mills, M. J., Phil. Mag. A, 80, 2841 (2000).Google Scholar
21. Nagpal, P. and Baker, I., Metall. Trans. A, 21A, 2281 (1990).Google Scholar
22. Monroe, P., Intermetallics, 4, 5 (1996).Google Scholar
23. Anderson, I. M., Acta mater., 45 3897 (1997).Google Scholar
24. Laves, F., Theory of Alloy Phases (ASM Publication, Cleveland, 1956).Google Scholar
25. Takeuchi, S., Phil. Mag. A 71, 1255 (1995).Google Scholar
26. Mills, M. J., Srinivasan, R., Savage, M. F., Noebe, R. D., Lograsso, T. and Daw, M. S., Interstital and Substitutional Effects in Intermetallics, eds. Baker, I., Noebe, R. D. and George, E. P. (TMS Publications, Warrendale, 1998), p. 99.Google Scholar
27. Liu, C. T., Fu, C. L. and Schneibel, J. H., MRS Proceedings, this volume.Google Scholar
28. Srinivasan, R., Daw, M.S., Noebe, R.D. and Mills, M. J., Phil. Mag. A, submitted for publication.Google Scholar
29. Mills, M. J. and Miracle, D. B., Acta Metall. Mater., 41, 86 (1993).Google Scholar
30. Mills, M. J., Srinivasan, R., Daw, M. S., Phil. Mag. A, 77, 801 (1998).Google Scholar
31. Collins, G. S., Fan, J. and Bai, B., Structural Intermetallics, eds. Nathal, M. V., Darolia, R., Liu, C. T., Martin, P. L., Miracle, D. B., Wagner, R. and Yamauchi, M. (TMS Publications, Warrendale, 1997), p. 43.Google Scholar