Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T06:24:10.167Z Has data issue: false hasContentIssue false

Dislocation Image Stresses at Free Surfaces by the Finite Element Method

Published online by Cambridge University Press:  01 February 2011

Meijie Tang
Affiliation:
Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551
Guanshui Xu
Affiliation:
Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551
Wei Cai
Affiliation:
Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551
Vasily Bulatov
Affiliation:
Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551
Get access

Abstract

The finite element method has been routinely used to calculate the image stresses of dislocation segments. When these segments intersect with surfaces, the image stresses at the surfaces diverge singularly. At the presence of these singularities, both convergence and accuracy of using the finite element method need to be examined critically. This article addresses these issues with the aim toward the application of dislocation dynamics simulations in thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hirth, J. P. and Lothe, J., Theory of dislocations, 2nd ed., Wiley, New York, NY (1982).Google Scholar
2. Bulatov, V. V., Tang, M., and Zbib, H., MRS Bulletin 26, 191(2001).Google Scholar
3. Tang, M., Kubin, L. P., and Canova, G. R., G. R., , Acta Meta., 46, 3221(1998).Google Scholar
4. Van der Giessen, E. and Needleman, A., Computational Materials Modeling 42, 294 (1994).Google Scholar
5. Fivel, M. C., Gosling, T. J., and Canova, G. R., Modelling Simul. Mater. Sci. Eng. 7, 753 (1999).Google Scholar
6. Martinez, R. and Ghoniem, N. M., Comp. Model. Eng. Sci. 3, 229 (2002).Google Scholar
7. Groh, S., Devincre, B., Kubin, L. P., Roos, A., Feyel, F., Chaboche, J-L., Phil. Mag. Lett. 83, 303 (2003).Google Scholar
8. Hughes, Thomas J. R., The Finite Element Method: linear static and dynamic finite element analysis, Dover Publications Inc., Mieola, New York (2000).Google Scholar
9. Honda, K., Jap. J. Appl. Phys. 18, 215 (1979).Google Scholar
10. Tang, M., Cai, W., Bulatov, V., Xu, G., to be published.Google Scholar