Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T16:52:56.605Z Has data issue: false hasContentIssue false

Direct Observations of Relaxation of Si/SiGe/Si on Insulator

Published online by Cambridge University Press:  01 February 2011

Tongda Ma
Affiliation:
[email protected], General Research Institute for Nonferrous Metals, Beijing, China
Hailing Tu
Affiliation:
[email protected], General Research Institute for Nonferrous Metals, Beijing, China
Get access

Abstract

Microstructural evolution is directly observed when the cross-sectional film specimen of Si/SiGe/Si on insulator (Si/SiGe/SOI) is heated from room temperature (R.T., 291 K) up to 1113 K in high voltage transmission electron microscope (HVEM). The misfit dislocation at the lower interface of the SiGe layer begins to extend downwards even at 913 K. The lower interface takes the lead in roughening against the upper interface of the SiGe layer. The roughened interface is ascribed to elastic relaxation. As misfit strain is partially transferred to SOI top Si layer and misfit dislocation is prolonged at the lower interface, the roughened interface turns smooth again. Thereafter, the misfit dislocations are introduced into the upper roughened interface of the SiGe layer to release the increased misfit strain. It is suggested that the microscopic relaxation of the SiGe layer is related to dislocation behavior and strain transfer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rim, K. Hoyt, J. L. and Gibbons, J. F. IEEE Trans. Electron Devices 47, 1406 (2000)Google Scholar
2 Powell, A. R. Iyer, S. S. and Legoues, F. K. Appl. Phys. Lett. 64, 1856 (1994)Google Scholar
3 Luo, Y. H. Liu, J. L. Jin, G. Wan, J. Wang, K. L. Appl. Phys. A 74, 699 (2002)Google Scholar
4 Mooney, P. M. Cohen, G. M. Chu, J. O. and Murray, C. E. Appl. Phys. Lett. 84, 1093 (2004)Google Scholar
5 Rehder, E. M. Inoki, C. K. Kuan, T. S. Kuech, T. F. J. Appl. Phys. 94, 7892 (2003)Google Scholar
6 Hull, R. Bean, J. C. Werder, D.J., and Leibenguth, R.E., Appl. Phys. Lett. 52, 1605 (1988)Google Scholar
7 Stach, E. A. Hull, R. Bean, J. C. Jones, K. S. and Nejim, A. Microscopy AND Microanalysis 4, 294 (1998)Google Scholar
8 Bolkhovityanov, Yu. B. Deryabin, A. S. Gutakovskii, A. K. Revenko, M. A. and Sokolovb, L. V. Appl. Phys. Lett. 85, 6140 (2004)Google Scholar
9 Ma, T. Tu, H. Hu, G. Shao, B. Liu, A. J. Crys. Growth 289, 489 (2006)Google Scholar
10 Ma, T. Tu, H. Hu, G. Shao, B. and Liu, A. Appl. Surf. Sci. 253, 124 (2006)Google Scholar
11.Kästner, G. andGösele, U., J. Appl. Phys. 88, 4048 (2000)Google Scholar
12 Roberts, M. M. Klein, L. J. Savage, D. E. Slinker, K. A. Friesen, M. Celler, G. Eriksson, M. A. and Lagally, M. G. Nature Materials 5, 388 (2006)Google Scholar