Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T01:58:26.657Z Has data issue: false hasContentIssue false

The Diffusivity of Self-Interstitials in Silicon

Published online by Cambridge University Press:  26 February 2011

Frederick F. Morehead*
Affiliation:
IBM Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

Values of the diffusivity of silicon self-interstitials have been previously inferred from analyses of the in-diffusion of Au in undislocated Si, e.g., 2×10-7 cm2 s-1 at 1100 °C. A more complete analysis by numerical integration of the effective diffusion equation with fewer assumptions yields ahigher minimum value, 6×10-6 cm2s-1 at 1100 °C. Recently published experiments showing no measurable difference in the oxidation-reduced diffusion of Sb in Si at 10 and 40 microns are consistent with this high value.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Refrences

1.Gösele, U., Morehead, F., Frank, W. and Seeger, A.,Appl.Phys.Lett.38,157(1981).Google Scholar
2.Stolwijk, N.A., Schuster, B. and Hölzl, J.,Appl.Phys.A 33,133(1984).Google Scholar
3.Stolwijk, N.A., Schuster, B.,Hölzl, J., Mehrer, H. and Frank, W.,Physica 116B,335(1983)Google Scholar
4.Tan, T.Y., Morehead, F. and Gösele, U. in Defects in Silicon, Kimerling, L.C. and Bullis, W.M. eds.(Electrochemical Society, Pennington,NJ, 1983)p.325.Google Scholar
5.Tan, T.Y., Gösele, U. and Morehead, F.,Appl.Phys.A 31,97(1983).Google Scholar
6.Gösele, U., Morehead, F.,Föll, H., Frank, W. and Strunk, H. in Semiconductor Silicon 1981, Huff, Hr., Kriegler, R.J. and Takeishi, Y. eds.(Electrochemical Society, Pennington, NJ, 1981)p.766.Google Scholar
7.Morehead, F., Stolwijk, N., Meyberg, S. and Gösele, U.,Appl.Phys.Lett.42,690(1983).Google Scholar
8.Tan, T.Y. and Gösele, U.,Appl.Phys.A 37,1(1985).Google Scholar
9.Mizuo, S. and Higuchi, H., Jap.J.Appl.Phys. 21,56(1982); S.Mizuo and H.Higuchi,Jap.J.Appl.Phys. 20,690(1983).Google Scholar
10.Mizuo, S. and Higuchi, H.,J.Electrochem.Soc. 129, 2292(1982); S. Mizuo and H. Higuchi, J.Electrochem.Soc. 130,194 (1983).Google Scholar
11.Taniguchi, K., Antoniadas, S.A. and Matsushita, Y.,Appl.Phys.Lett. 42,961(1983).Google Scholar
12.Mantovani, S., Nava, F., Nobili, S. and Ottaviani, G.,Phys.Rev.B 33,5536(1986).Google Scholar
13.Hauber, J. and Frank, W., Extended Abstracts Vol.86–l(Electrochemical Society, Pennington,NJ 1986)p.340.Google Scholar
14. A simple and useful expression for the solution of Eq.(5) for the kickout mechanism alone, i.e., , is where . and c0 is at t = 0 for all x. Its form is taken from Ref.[l] by combining its Eqs.(7,9,10) to give x(C) and “correcting” the result by multiplying by √2. It gives results ±5% of either a fine-gridded numerical integration or the complete analytic solution in Ref.[15], plotted for example, in Fig.(l) of Ref.[2]. The first order approximation used for analysis of Pt in-diffusion in Ref.[12], taken from [15], is x ∼ (C-1 - 1)√(G't), where G' = G/a 2, where |a|exp(a 2) = (2C0√π)-1, which is valid only for C >.4..4.>Google Scholar
15.Seeger, A.,Phys.Status Solidi(A) 61,521(1980).Google Scholar
16.Griffin, P.B., Fahey, P.M., Plummer, J.D. and Dutton, R.W.,Appl.Phys.Lett.47,319(1985).Google Scholar