Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T13:41:37.488Z Has data issue: false hasContentIssue false

Dielectric-tuned Diamondlike Carbon Materials for High-performance Self-aligned Graphene-channel Field Effect Transistors

Published online by Cambridge University Press:  21 May 2012

Susumu Takabayashi
Affiliation:
Research Institute of Electrical Communication (RIEC), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan JST-CREST, K’s Olancho Bldg., 7 Olancho, Chiyoda-ku, Tokyo 102-0076, Japan
Meng Yang
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
Shuichi Ogawa
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
Yuji Takakuwa
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
Tetsuya Suemitsu
Affiliation:
Research Institute of Electrical Communication (RIEC), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan JST-CREST, K’s Olancho Bldg., 7 Olancho, Chiyoda-ku, Tokyo 102-0076, Japan
Taiichi Otsuji
Affiliation:
Research Institute of Electrical Communication (RIEC), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan JST-CREST, K’s Olancho Bldg., 7 Olancho, Chiyoda-ku, Tokyo 102-0076, Japan
Get access

Abstract

The ‘DLC-GFET’, a graphene field effect transistor with a diamondlike carbon (DLC) top-gate dielectric film, is presented. The DLC film was formed ‘directly’ onto the graphene channel without forming passivation interlayers using our original photoemission-assisted plasma-enhanced chemical vapor deposition (PA-CVD), where the plasma was precisely controlled by photoemission from the sample with quite low electric power to minimize plasma damage to the channel. The DLC-GFET exhibits clear ambipolar characteristics with a slightly positive shift of the neutral points (Dirac voltages). Relatively high transconductances were obtained as 14.6 (8.8) mS/mm in the n (p) channel modes, respectively, with a thick gate dielectric of 48 nm and a long gate length of 5 μm, promising vertical scaling-down to improve the high-frequency performance. The positive shift of the Dirac voltage is due to unintentional hole doping from oxygen species in the DLC film into the graphene channel, promising a minute modulation doped structure with oxygen to overcome high resistance in the access region. Hence, a DLC film deposited by PA-CVD is a candidate for the gate dielectric on graphene.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666 (2004); S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602(2008); K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 (2008); M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, Phys. Rev. Lett. 101, 267601 (2008).CrossRefGoogle Scholar
Schwierz, F., Nature Nanotech. 5, 487 (2010).CrossRefGoogle Scholar
Lin, Y. M., Dimitrakopoulos, C., Jenkins, K. A., Farmer, D. B., Chiu, H. Y., Grill, A., and Avouris, P., Science 327, 662 (2010).CrossRefGoogle Scholar
Lemme, M. C., Echtermeyer, T. J., Baus, M., and Kurz, H., IEEE Electron Device Lett. 28, 282 (2007); M. C. Lemme, T. J. Echtermeyer, M. Baus, B. N. Szafranek, J. Bolten, M. Schmidt, T. Wahlbrink, and H. Kurz, Solid-State Electron. 52, 514(2008); Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, Nano Lett. 9, 422 (2009); A. Pirkle, R. M. Wallace, and L. Colombo, Appl. Phys. Lett. 95, 133106 (2009); B. Fallahazad, S. Kim, L. Colombo, and E. Tutuc, Appl. Phys. Lett. 97, 123105 (2010).CrossRefGoogle Scholar
Aisenberg, S., and Chabot, R., J. Appl. Phys. 42, 2953 (1971); J. Robertson, Mater. Sci. Eng. R 37, 129(2002).CrossRefGoogle Scholar
Takami, T., Ogawa, S., Sumi, H., Kaga, T., Saikubo, A., Ikenaga, E., Sato, M., Nihei, M., and Takakuwa, Y., e-J. Surf. Sci. Nanotech. 7, 882 (2009); H. Sumi, S. Ogawa, M. Sato, A. Saikubo, E. Ikenaga, M. Nihei, and Y. Takakuwa, Jpn. J. Appl. Phys. 49, 076201(2010).CrossRefGoogle Scholar
Das, A., Pisana, S., Chakraborty, B., Piscanec, S., Saha, S. K., Waghmare, U. V., Novoselov, K. S., Krishnamurthy, H. R., Geim, A. K., Ferrari, A. C., and Sood, A. K., Nature Nanotech. 3, 210 (2008).CrossRefGoogle Scholar
Takabayashi, S., Otsuji, T., Takakuwa, Y., Ogawa, S., and Yang, M., Jpn. Patent No. P2012–031899 (16 February 2012) Google Scholar