Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T05:34:04.987Z Has data issue: false hasContentIssue false

Diagnosis and Modelling of Nonlinear Dynamics in Laser Cutting, Welding and Drilling

Published online by Cambridge University Press:  01 February 2011

W. Schulz*
Affiliation:
Fraunhofer Institut für Lasertechnik Steinbachstrasse 15, 52074 Aachen, Germany
Get access

Abstract

Laser cutting and welding are well established industrial applications. To maintain productivity and to guarantee product quality the industry tries to introduce monitoring and control systems. The long term goal is the autonomous laser machine. Signal assessment is advancing by monitoring and simulation of the dynamical processes. Applying the advanced results about diagnosis and modelling broadens the potentials to cope with productivity and quality features in drilling, trepanning and fine cutting.

As result, in cutting two mechanisms for the formation of adherent dross are revealed theoretically, identified by the monitoring system and can be avoided by modulation of the laser beam power. In welding, the dynamic model predicts the formation of pores sets in or is suspended depending on modulation frequency for the laser power. In drilling the mechanisms governing the maximum depth of the drilled hole – still showing efficient melt removal – are identified experimentally and can be related to the processing parameters theoretically

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Friedrich, R., Radons, G., Ditzinger, T., Henning, A., Phys. Rev. Lett. 85, 23 (2000) 4884 Google Scholar
[2] Makashev, N.K., Asmolov, N.S., Blinkov, V.V., Boris, A.Y., Buzykin, O.G., Burmistrov, A.V., Gryaznov, M.R., Makarov, V.A., Sov. J. Quant. Electr. 22(1992)847 Google Scholar
[3] Nemchinsky, V.A., J. Phys. D: Appl. Phys. 30(1997)2566 Google Scholar
[4] Poprawe, R., König, W., Annals of the CIRP, 50, 1 (2001)137Google Scholar
[5] Klimentov, S.M., Garnov, S.V., Kononenko, T.V., Konov, V.I., Pivovarov, P.A., Dausinger, F., Applied Physics A69(1999)633 Google Scholar
[6] Hellrung, D., Gillner, A., Poprawe, R., Proc. Laser97, Munich, SPIE 3097(1997)267 Google Scholar
[7] Schulz, W., Poprawe, R., IEEE JSTQE 6, 4 (2000)696 Google Scholar
[8] Oron, A., Davies, S.H., Bankoff, S.G., Rev. Mod. Phys. 69(1997)931 Google Scholar
[9] Aksel, N., Archive of Applied Mechanics 70(2000) 8190 Google Scholar
[10] Scholle, M., Aksel, N., Z. angew. Math. Phys. 52(2001)749 Google Scholar
[11] de Gennes, P.G., Rev. Mod. Phys. 57(1985)827 Google Scholar
[12] Schäffer, E., Wong, P., Phys. Rev. Lett. 80(1998)3069 Google Scholar
[13] Pritchard, W.G., Saavedra, P., Scott, L.R., Tavener, S.J., in: Brown, R.A., Davies, S.H. (eds.), Free Boundaries in Viscous Flows, New York, Springer-Verlag (1994)29 Google Scholar
[14] Eggers, J., Rev. Mod. Phys. 69(1997)865 Google Scholar
[15] Rose, J.W., Int. J. Heat and Mass Transfer 43(2000)3869 Google Scholar
[16] Temam, R., Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York (1988)Google Scholar
[17] Constantin, R., Foias, C., Nicolaenko, B., Temam, R., Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, New York, Springer-Verlag (1989)Google Scholar
[18] Robinson, J.C., Chaos 5(1995)330 Google Scholar
[19] Biot, M. A., Varational Principles in Heat Transfer, Oxford University Press, Oxford (1970)Google Scholar
[20] Elliot, C.M., Ockendon, J.R., Weak and variational methods for moving boundary problems, Pitman, Boston (1982)Google Scholar
[21] Canuto, C., Hussaini, M.Y., Quateroni, A., Zang, T.A., Spectral methods in fluid dynamics, Springer Verlag (1988)Google Scholar
[22] Sirovich, L., Knight, B.W., Rodriguez, J.D., Quart. Appl. Math. 48(1990)535 Google Scholar
[23] Enss, V., Kostrykin, V., Schulz, W., Zefferer, H., Petring, D., (Hoffmann, K.-H., Jäger, W., Lohmann, Th., Schunk, H., eds.), Mathematik - Schlüsseltechnologie für die Zukunft, Berlin, Springer Verlag, (1997)161 Google Scholar
[24] Schulz, W., Kostrykin, V., Zefferer, H., Petring, D., Poprawe, R., Int. J. Heat Mass Transfer 40, 12 (1997)2913 Google Scholar
[25] Sethian, J.A., Level Set Methods and Fast Marching Methods, Cambridge University Press, Cambridge (1999)Google Scholar
[26] Adalsteinsson, D., Sethian, J.A., J. Comp. Phys. 148(1999)222 Google Scholar
[27] Zenger, C., in Hackbusch, W. (ed.), Parallel Algorithms for Partial Differential Equations: Proceedings of the 6-th GAMM-Seminar, Kiel, January, 1990 Notes on Numerical Fluid Mechanics, Vieweg, Braunschweig, 31(1991)241 Google Scholar
[28] Ki, H., Mohanty, P.S., Mazumder, T., J. Phys. D: Appl. Phys. 34(2001)364 Google Scholar
[29] Beersiek, J., Schulz, W., Poprawe, R., Mueller, R., Duley, W.W., Proc. ICALEO97, San Diego, USA (1997)Google Scholar
[30] Schulz, W., Michel, J., Eppelt, U., and Maier, C., Modelling and dynamical simulation of laser beam welding, in: Vincenzini, P. and Lami, A. (eds.), ”Computational Modelling and Simulation of Materials III - Part B, Advances in Science and Technology”, Techna Group Srl, 43(2004)599610 Google Scholar
[31] Kostrykin, V., Schulz, W., Niessen, M., Michel, J., Short-time dynamics in laser material processing, in: Radons, G., Neugebauer, R. (Hrsg.), ”Nonlinear Dynamics of Production Systems”, Wiley-VCH, Weinheim, (2004)443452, ISBN 3–527–40430–9 Google Scholar
[32] Michel, J., Pfeiffer, S., Schulz, W., Niessen, M., Kostrykin, V., Approximate Model for Laser Welding, in: Radons, G., Neugebauer, R. (Hrsg.), ”Nonlinear Dynamics of Production Systems”, Wiley-VCH, Weinheim, (2004)427441, ISBN 3–527–40430–9 Google Scholar
[33] Schulz, W., Kostrykin, V., Michel, J., Niessen, M., Modelling and Simulation of Process Monitoring and Control in Laser Cutting, in: Radons, G., Neugebauer, R. (Hrsg.), ”Nonlinear Dynamics of Production Systems”, Wiley-VCH, Weinheim, (2004)411426, ISBN 3–527–40430–9 Google Scholar
[34] Abels, P., Kratzsch, C., Schulz, W., Kaierle, S., Poprawe, R., 2000, Universal coaxial process control system for laser material processing, Proc. ICALEO99, San Diego, USA, LIA Section E, 87:99108.Google Scholar
[35] Schulz, W., Kostrykin, V., Zefferer, H., Petring, D., Poprawe, R., 1997, Int. J. Heat and Mass Transfer, 40/12:29132928.Google Scholar
[36] Schulz, W., Kostrykin, , Nieβen, M., Michel, J., Petring, D., Kreutz, E.W., Poprawe, R., 1999, J. Phys. D: Appl. Phys. 32:12191228.Google Scholar
[37] Schulz, W., Poprawe, R., 2000 IEEE Journal of Selected Topics in Quantum Electronics, 6/4: 696705.Google Scholar
[38] Arata, Y., Maruo, H., Miyamoto, I., and Takeuchi, S.,, Transaction of JWRI 8/2(1979)1526.Google Scholar