Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T08:58:41.671Z Has data issue: false hasContentIssue false

Development of X-ray, Gamma Ray Spectroscopic Detector Using Epitaxially Grown Single Crystal Thick CdTe Films

Published online by Cambridge University Press:  31 January 2011

Madan Niraula*
Affiliation:
[email protected], Nagoya Institute of Technology, Gokiso, Showa, Nagoya, 466-8555, Japan
Get access

Abstract

In this paper, we review our efforts in the spectroscopic detector development using epitaxially grown thick single crystal films of CdTe. The films were grown on GaAs and Si substrates using metalorganic vapor phase epitaxy growth technique. High crystalline quality thick single crystal CdTe films (>260 μm) were obtained where the growth rates could be varied from 10 to 70 μm/h by adjusting the precursor's flow rates, ratios and the substrate temperatures. Spectroscopic detectors were fabricated in a p-CdTe/n-CdTe/n+-GaAs or p-CdTe/n-CdTe/n+-Si heterojunction diode structure. Both types of detector were capable of detecting and resolving energy peaks from a gamma ray source. However, the spectroscopic performance of p-CdTe/n-CdTe/n+-Si detectors was better than that of the p-CdTe/n-CdTe/n+-GaAs detectors. Details on the growth characteristics, detector fabrication and the detector performance are reported. Furthermore, current challenges in this detector fabrication technique are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chen, H. Awadalla, S. A. Mackenzie, J. Redden, R. Bindley, G. Bolotnikov, A. E. Camarda, G. S. Carini, G. and James, R. B. IEEE Trans. Nucl., Sci 54(4), 811816 (2007).Google Scholar
2. Szeles, C. phys. stat. sol. (b), 341(3), 783790 (2004).Google Scholar
3. Funaki, M. Ozaki, T. Satoh, K. Ohno, R. Nucl. Instrum. Meth., A 436, 120126 (1999).Google Scholar
4. Cui, Y. Groza, M. Wright, G. W. Roy, U. N. Burger, A. Li, L. Lu, F. Black, M. A. and James, R. B., J. Electron. Mater., 35(6), 12671274 (2006).Google Scholar
5. Mandal, K. C. Kang, S. H. Choi, M. Kargar, A. Harrison, M. J. McGregor, D. S. Bolotnikov, A. E. Carini, G. A. Camarda, G. C. and James, R. B. IEEE Trans. Nucl. Sci., 54(4), 802806 (2007).Google Scholar
6. James, R. B. J. Electron. Mater., 27, 788799 (1998).Google Scholar
7. Burger, A. Groza, M. Cui, Y. Hillman, D. Brewer, E. Bilikiss, A. Wright, G. W. Li, L. Lu, F. and James, R. B. J. Electron. Mater., 32, 756760 (2003).Google Scholar
8. Niraula, M. Yasuda, K. Nakanishi, Y. Uchida, K. Mabuchi, T. Agata, Y. and Suzuki, K. J. Electron. Mater., 33(6), 645650 (2004).Google Scholar
9. Niraula, M. Yasuda, K. Uchida, K. Nakanishi, Y. Mabuchi, T. Agata, Y. and Suzuki, K. IEEE Electron. Device Lett., 26(1), 810 (2005).Google Scholar
10. Yasuda, K. Niraula, M. Kusama, H. Yamamoto, Y. Tominaga, M. Takagi, K. Agata, Y. and Suzuki, K. IEEE Trans. Nucl. Sci., 52(5), 19511955 (2005).Google Scholar
11. Niraula, M. Yasuda, K. Ohnishi, H. Takahashi, H. Eguchi, K. Noda, K. and Agata, Y. J. Cryst., Growth 284, 1519 (2005).Google Scholar
12. Yasuda, K. Hatano, H. Ferid, T. Minamide, M. Maejima, T. and Kawamoto, K. J. Crys. Growth 166, 612 (1996).Google Scholar
13. Ekawa, M. Yasuda, K. Sone, S. Sugiura, Y. Saji, M. and Tanaka, A. J. Appl. Phys. 67, 6865 (1990).Google Scholar
14. Sone, S. Ekawa, M. Yasuda, K. Sugiura, Y. Saji, M. and Tanaka, A. Appl. Phys. Lett. 56, 539 (1990).Google Scholar
15. Niraula, M. Yasuda, K. Noda, K. Nakamura, K. Shingu, I. Yokota, M. Omura, M. Minoura, S. Ohashi, H. Tanaka, R. and Agata, Y. IEEE Trans. Nucl. Sci., 54(4) 817820 (2007).Google Scholar
16. Niraula, M. Yasuda, K. Takagi, K. Kusama, H. Tominaga, M. Yamamoto, Y. Agata, Y. and Suzuki, K. J. Electron. Mater., 34 (6), 815819 (2005).Google Scholar
17. Lovergine, N. Bayhan, M. Prete, P. Cola, A. Tapfer, L. Mancini, A. M. J. Crys. Growth 214/215, 229 (2000).Google Scholar
18. Babentsov, V. Corregidor, V. Castano, J. L. Fiederle, M. Feltgen, T. Benz, K. W. and Dieguez, E. Cryst. Res. Technol., 36(6), 535(2001).Google Scholar
19. Niraula, M. Yasuda, K. Watanabe, A. Kai, Y. Ichihashi, H. Yamada, W. Oka, H. Yoneyama, T. Nakashima, H. Nakanishi, T. Matsumoto, K. Katoh, D. and Agata, Y. IEEE Trans. Nucl. Sci., (2009) (in press).Google Scholar
20. Halliday, D. P. Potter, M. D. G. Mullins, J. T. and Brinkman, A. W. J. Cryst., Growth 220, 30, (2000).Google Scholar
21. Shin, H. Y. Sun, Y. Mater. Sci. Eng., B 52, 78 (1998).Google Scholar
22. Yokota, M. Yasuda, K. Niraula, M. Nakamura, K. Ohashi, H. Tanaka, R. Omura, M. Minoura, S. Shnigu, I. and Agata, Y. J. Electron. Mater., 37 (9), 1391 (2008).Google Scholar
23. Sze, S. M. in “Semiconductor Devices Physics and Technology”, John Wiley and Sons, pp. 4855 and 92-97 (1985).Google Scholar