Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T18:26:05.733Z Has data issue: false hasContentIssue false

Development of Low-Temperature Sintering Cu Nanoparticles

Published online by Cambridge University Press:  29 April 2013

Toshitaka Ishizaki
Affiliation:
Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192, Japan
Ryota Watanabe
Affiliation:
Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192, Japan
Kunio Akedo
Affiliation:
Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192, Japan
Toshikazu Satoh
Affiliation:
Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192, Japan
Get access

Abstract

Cu nanoparticles capped with fatty acids and amines were developed as low-temperature sintering materials. The fatty acids and amines used were decanoic acid + decyl amine (C10) and oleic acid + oleyl amine (C18), respectively. The synthesized Cu nanoparticles were analyzed using X-ray diffraction, transmission electron microscopy, and thermogravimetric and differential thermal analysis. Because both of the capping layers could be decomposed at temperatures lower than 300°C even under an inert atmosphere, bonding and sintering experiments could be carried out in the absence of oxygen to prevent the oxidation of the Cu nanoparticles. The sintered structures were observed using scanning electron microscopy. The shear strengths of Cu plates bonded using the C18 Cu nanoparticles were larger than those of plates bonded using the C10 Cu nanoparticles. At 300°C, the strength was higher than 30 MPa, and of the same order as ordinary high-temperature solders, even though the processing temperature was low. The resistivity of a film sintered using the C18 Cu nanoparticles was 12 μΩcm at 300°C, which was lower than the values reported in previous studies.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Buffat, P. and Borel, J-P., Phys. Rev. A 13, 2287 (1976).10.1103/PhysRevA.13.2287CrossRefGoogle Scholar
Siow, K. S., J. Alloys Comp. 514, 6 (2012).10.1016/j.jallcom.2011.10.092CrossRefGoogle Scholar
Lei, T. G., Calata, J. N. and Lu, G-Q., IEEE Trans. Comp. Packag. Tech. 33, 98 (2010).10.1109/TCAPT.2009.2021256CrossRefGoogle Scholar
Quintero, P. O. and McCluskey, F. P., IEEE Trans. Dev. Mater. Reliab. 11, 531 (2011).10.1109/TDMR.2011.2140114CrossRefGoogle Scholar
Kosmala, A., Wright, R., Zhang, Q. and Kirby, P., Mater. Chem. Phys. 129, 1075 (2011).10.1016/j.matchemphys.2011.05.064CrossRefGoogle Scholar
Zhang, Z., Zhang, X., Xin, Z., Deng, M., Wen, Y. and Song, Y., Nanotechnology 22, 425601 (2011).10.1088/0957-4484/22/42/425601CrossRefGoogle ScholarPubMed
Cheon, J. M., Lee, J. H., Song, Y. and Kim, J., Colloids Surf. A: Physicochem. Eng. Asp. 389, 175 (2011).10.1016/j.colsurfa.2011.08.032CrossRefGoogle Scholar
Morisada, Y., Nagaoka, T., Fukusumi, M., Kashiwagi, Y., Yamamoto, M. and Nakamoto, M., J. Electron. Mater. 39, 1283 (2010).10.1007/s11664-010-1195-3CrossRefGoogle Scholar
Yan, J., Zou, G., Hu, A. and Zhou, Y. N., J. Mater. Chem. 21, 15981 (2011).Google Scholar
Jeong, S., Woo, K., Kim, D., Lim, S., Kim, J. S., Shin, H., Xia, Y. and Moon, J., Adv. Funct. Mater. 18, 679 (2008).10.1002/adfm.200700902CrossRefGoogle Scholar
Park, B. K., Kim, D., Jeong, S., Moon, J. and Kim, J. S., Thin Solid Films 515, 7706 (2007).10.1016/j.tsf.2006.11.142CrossRefGoogle Scholar
Tomonari, M., Ida, K., Yamashita, H. and Yonezawa, T., J. Nanosci. Nanotechnol. 8, 2468 (2008).10.1166/jnn.2008.237CrossRefGoogle Scholar
Yonezawa, T., Takeoka, S., Kishi, H., Ida, K. and Tomonari, M., Nanotechnology 19, 145706 (2008).10.1088/0957-4484/19/14/145706CrossRefGoogle Scholar
Yonezawa, T., Nishida, N. and Hyono, A., Chem. Lett. 39, 548 (2010).10.1246/cl.2010.548CrossRefGoogle Scholar
Ishizaki, T. and Watanabe, R., J. Mater. Chem. in press.Google Scholar
Kim, S., Kim, K.-S., Kim, S.-S., Suganuma, K. and Izuta, G., J. Electron. Mater. 38, 2668 (2009).10.1007/s11664-009-0928-7CrossRefGoogle Scholar
Kim, S., Kim, K.-S., Kim, S.-S. and Suganuma, K., J. Electron. Mater. 38, 266 (2009).10.1007/s11664-008-0550-0CrossRefGoogle Scholar