Article contents
Development of Bacterial Cellulose Nanocomposites
Published online by Cambridge University Press: 28 January 2011
Abstract
The development of synthetic materials with inherent bone properties would allow the safe restoration of bone function and reduce current risks associated with the use of grafts. This study investigated the development of bacterial cellulose–hydroxyapatite composite (CdHA-BC) as a potential bone substitute material. Composites of bacterial cellulose (BC) and oxidized, degradable, cellulose (OBC) were mineralized by sequential incubation in calcium chloride and aqueous sodium phosphate to form a calcium deficient hydroxyapatite (CdHA). The CdHA produced in BC and OBC is similar in morphology and chemistry to the hydroxyapatite found in natural bone. The formation of CdHA is supported by XRD, and EDS results. The CdHA-BC and CdHA-OBC composites degrade in a simulated aqueous physiological environment.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2011
References
WORKS CITED
- 2
- Cited by