Article contents
Development Of A Multi-Grid Fdtd Code For Three-Dimensional Simulation Of Large Microwave Sintering Experiments
Published online by Cambridge University Press: 10 February 2011
Abstract
The Finite-Difference Time-Domain (FDTD) code available at the University of Utah has been used to simulate sintering of ceramics in single and multimode cavities, and many useful results have been reported in literature [1–4]. More detailed and accurate results, specifically around and including the ceramic sample, are often desired to help evaluate the adequacy of the heating procedure. In electrically large multimode cavities, however, computer memory requirements limit the number of the mathematical cells, and the desired resolution is impractical to achieve due to limited computer resources. Therefore, an FDTD algorithm which incorporates multiple-grid regions with variable-grid sizes is required to adequately perform the desired simulations. In this paper we describe the development of a three-dimensional multi-grid FDTD code to help focus a large number of cells around the desired region. Test geometries were solved using a uniform-grid and the developed multi-grid code to help validate the results from the developed code. Results from these comparisons, as well as the results of comparisons between the developed FDTD code and other available variable-grid codes are presented. In addition, results from the simulation of realistic microwave sintering experiments showed improved resolution in critical sites inside the three-dimensional sintering cavity. With the validation of the FDTD code, simulations were performed for electrically large, multimode, microwave sintering cavities to fully demonstrate the advantages of the developed multi-grid FDTD code.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1996
References
- 1
- Cited by