Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T15:09:20.363Z Has data issue: false hasContentIssue false

Determination of Thermal Parameters of Nanostructures Exhibiting One-Dimensional Heat Flow Through a Thermal Transient Method

Published online by Cambridge University Press:  31 January 2011

Anton Arriagada
Affiliation:
[email protected], University of California, San Diego, Electrical and Computer Engineering, La Jolla, California, United States
Edward T Yu
Affiliation:
[email protected], University of California, San Diego, Electrical and Computer Engineering, La Jolla, California, United States
Prabhakar Bandaru
Affiliation:
[email protected], UC, San Diego, Mechanical and Aerospace Engineering, La Jolla, California, United States
Get access

Abstract

We present an improved methodology for a thermal transient method enabling simultaneous measurement of thermal conductivity and specific heat of nanoscale structures with one-dimensional heat flow. The temporal response of a sample to finite duration heat pulse inputs for both short (1 ns) and long (5μs) pulses is analyzed and exploited to deduce the thermal properties. Excellent agreement has been obtained between the recovered physical parameters and computational simulations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Carslaw, H. S. Jaeger, J. C. Conduction of Heat in Solids, Claredon Press, Oxford, 1959.Google Scholar
[2] Bertman, B. Heberlein, D. C. Sandiford, D. J. Shen, L. Wagner, R. R. Cryogenics 10 (1970) 326327.Google Scholar
[3] Gershenson, M. Alterovitz, S. Applied Physics A: Materials Science & Processing 5 (1975) 329334.Google Scholar
[4] Ghate, P. B. Electromigration-Induced Failures in VLSI Interconnects, in: Reliability Physics Symposium, 1982. 20th Annual, 1982, pp. 292299.Google Scholar
[5] Alterovitz, S. Gershenson, M. Journal of Computational Physics 19 (1975) 121133.Google Scholar
[6] Doetsch, G. Guide to the Application of the Laplace and z-Transforms Van Nostrand, London, 1971.Google Scholar
[7] Shapira, Y. Alterovitz, S. A. Journal of Thermal Analysis and Calorimetry 18 (1980) 477491.Google Scholar
[8] Alterovitz, S. Deutscher, G. Gershenson, M. Journal of Applied Physics 46 (1975) 36373643.Google Scholar
[9] Bortner, L. J. Newrock, R. S. Resnick, D. J. Journal of Applied Physics 61 (1987) 44524457.Google Scholar
[10] Filler, R. L. Lindenfeld, P. Deutscher, G. Review of Scientific Instruments 46 (1975) 439442.Google Scholar
[11] Cruz-Uribe, A., Trefny, J. U. Journal of Physics E: Scientific Instruments 15 (1982) 10541059.Google Scholar
[12] Madsen, J. Trefny, J. Journal of Physics E: Scientific Instruments 20 (1987) 13621365.Google Scholar
[13] Li, D. Wu, Y. Kim, P. Shi, L. Yang, P. Majumdar, A. Applied Physics Letters 83 (2003) 29342936.Google Scholar
[14] Lide, D. R. (Ed.) CRC Handbook of Chemistry and Physics, CRC Press/ Taylor and Francis, Boca Raton, 2008, p.Google Scholar