No CrossRef data available.
Article contents
Design and Numerical Simulation on the Optical and Electrical Behavior of a ZnO:Al Nanowire Array a-Si pin Solar Cell
Published online by Cambridge University Press: 01 February 2011
Abstract
One of the parameters that limit the efficiency of a thin film solar cell, especially the a-Si and the nc-Si solar cell is the cell thickness. Although thicker film can absorb most of the sun light, the optical generated carriers will recombination through the numerous gap states in the film that obtained lower short circuit current and fill factor. In the controversy, thinner film could not absorb enough sun light that also limit the short circuit current. In this works, we utilize nanowire structure to solve the conflict between the light absorption and the carrier transport. The designed structure has ZnO:Al nanowire array on the substrate. The p-i-n a-Si solar cell structure is grown along the surface of each ZnO: Al nanowire sequentially. Under sunlight illumination, the light is absorbed in the axis direction of the nanowire. However, the carrier transport is along the radial direction of the solar cell. Therefore, the long nanowire could absorb most of the solar light. In the mean time, the thickness of the solar cell still is thin enough for photo-generated carrier transport. The dependence of short circuit current, open circuit voltage and fill factor to the length, diameter and density of ZnO:Al nanowires were simulated.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2008