Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-08T02:00:00.933Z Has data issue: false hasContentIssue false

Design and calculation of advanced microstructural patterns by laser interference metallurgy

Published online by Cambridge University Press:  01 February 2011

Andres Fabian Lasagni
Affiliation:
[email protected], Saarland University, Materials Science, P.O.Box 15 11 50, Saarbrücken, Saarland, 66041, Germany, +49 681 302 3048, +49 681 302 4876
Christian Holzapfel
Affiliation:
[email protected], Saarland University, Materials Science, Germany
Frank Mücklich
Affiliation:
[email protected], Saarland University, Materials Science, Germany
Get access

Abstract

Laser Interference Metallurgy is a recently developed method for the laser material surface modification by which various interference patterns can be transformed directly, permanently, and efficiently to the surfaces of different kinds of materials. By using of this technique, different metallurgical effects such as melting, recrystallization, quenching, recovery, defect or phase formation can be exploited. In this work, advanced microstructural patterns are designed by means of the two dimensional Fourier Transformation. After that, the geometrical configuration for the laser interference experiments is calculated. Finally, thin metallic films are irradiated in order to demonstrate the viability of the presented method. The resulted structures were studied by means of Focus Ion Beam and Transmission Electron Microscopy. These surfaces represent a new type of long ordered topographical as well chemical patterns which might be applicable for well defined surface functionalization.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Xia, X., Adv. Mater. 16, 1245 (2004).Google Scholar
2. Ilcisin, K. J., Fedosejevs, R., Appl. Opt. 26, 396 (1987).Google Scholar
3. Phillips, H. M., Callahan, D. L., Sauerbrey, R., Szabó, G., Bor, Z., Appl. Phys. Lett. 58, 2761 (1991).Google Scholar
4. Heintze, M., Santos, P. V., Nebel, C. E., Stutzmann, M., Appl. Phys. Lett. 64, 3148 (1994).Google Scholar
5. Kelly, M. K., Rogg, J., Nebel, C. E., Stutzmann, M., Kátai, Sz., phys. stat. sol. (a), 166, 651 (1998).Google Scholar
6. Nebel, C. E., Christiansen, S., Strunk, H. P., Dahlheimer, B., Karrer, U., Stutzmann, M., phys. stat. sol. (a), 166, 667 (1998).Google Scholar
7. Fukumura, H., Uji-i, H., Banjo, H., Masuhara, H., Karnakis, D. M., Ichinose, N., Kawanishi, S., Uchida, K., Irie, M., Appl. Surf. Sci., 127, 761 (1998).Google Scholar
8. Fukumura, H., Kohji, Y., Nagasawa, K., Masuhara, H., J. Am. Chem. Soc., 116, 10304 (1994).Google Scholar
9. Shoji, Satoru, Kawata, Satoshi, Appl. Phys. Lett. 76, 2668 (2000).Google Scholar
10. Mücklich, F., Lasagni, A., Daniel, C., Intermetallics 13, 437 (2005).Google Scholar
11. Mützel, M., Meschede, D., Las. Phys. 15, 95 (2005).Google Scholar
12. Drodofsky, U., Stuhler, J., Schulze, T., Drewsen, M., Brezger, B., Pfau, T., Mlynek, J., Appl. Phys. B 65, 755 (1997).Google Scholar
13. Lipson, S., Lipson, H., Tannhauser, D., Optik, 3rd edition, Springer, Germnay, 1997, 171205.Google Scholar
14. Lasagni, A., Mücklich, F., Appl. Surf. Sci. 240, 214 (2005).Google Scholar
15. Lasagni, A., Holzapfel, C., Mücklich, F., Adv. Eng. Mat. 17, 487 (2005).Google Scholar