Published online by Cambridge University Press: 01 February 2011
BaTiO3/SrTiO3(001) epitaxial thin films were prepared at various growth rates by pulsed laser deposition, and their heterostructures were evaluated by synchrotron x-ray diffraction measurements and cross-sectional scanning transmission electron microscopy observations. In a film grown at a low deposition rate (0.01 nm/s), misfit dislocations are found near the interface and a fully relaxed BaTiO3 thin film grows epitaxially on the substrate. On the other hand, a film grown at a high deposition rate (0.04 nm/s) consists of strained and relaxed BaTiO3 lattices. Our results showed that the critical thickness of BaTiO3/SrTiO3(001) epitaxial thin films can be controlled by the deposition rate and that the critical thickness increases with increasing the deposition rate, and by adjusting the deposition rate we were able to prepare epitaxial thin films consisting of fully strained BaTiO3, partially strained BaTiO3 or fully relaxed BaTiO3. We have also achieved the growth controlling of BaTiO3 thin films on SrTiO3(001) substrates with SrRuO3 bottom electrode layer.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.