Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T17:41:13.628Z Has data issue: false hasContentIssue false

Deposition of Zinc Oxide Thin Films Using a Surface Reaction on Platinum Nanoparticles

Published online by Cambridge University Press:  05 April 2011

Kanji Yasui
Affiliation:
Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
Hitoshi Miura
Affiliation:
Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
Hiroshi Nishiyama
Affiliation:
Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
Get access

Abstract

A new chemical vapor deposition method for the growth of ZnO films using the reaction between dimethylzinc (DMZn) and thermally excited H2O produced by a Pt-catalyzed H2–O2 reaction was investigated. The thermally excited H2O molecules formed by the exothermic reaction of H2 and O2 on the catalyst were ejected from a fine nozzle into the reaction zone and allowed to collide with DMZn ejected from another fine nozzle. The ZnO films were grown directly on a-plane (11-20) sapphire substrates at substrate temperatures of 773-873 K with no buffer layer. X-ray diffraction patterns exhibited intense (0002) and (0004) peaks from the ZnO(0001) index plane. The smallest full width at half maximum (FWHM) value of the ω- rocking curve of ZnO(0002) was less than 0.1º. The largest Hall mobility and the smallest residual carrier concentration of the ZnO films were 169 cm2V−1s−1 and 1.7×1017 cm−3, respectively. Photoluminescence (PL) spectra at room temperature exhibited a band edge emission at 3.29 eV, with a FWHM of 104 meV. Green luminescence from deeper levels was generally about 1.5% of the band edge emission intensity. PL spectra at 5 K showed a strong emission peak at 3.3603 eV, attributed to the neutral donor-bound exciton Dºx. The FWHM was as low as 1.0 meV. Free exciton emissions also appeared at 3.3757 eV (FXA, n=1) and 3.4221 eV (FXA, n=2).

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hickernell, F. S., Proc. IEEE, 64, 631 (1976).Google Scholar
2. Pizzini, S., Butta, N., Narducci, D., and Palladino, M., J. Electrochem. Soc., 136, 1945 (1989).Google Scholar
3. Jeong, I. S., Kim, J. H., and Im, S., Appl. Phys. Lett., 83, 2946 (2003).Google Scholar
4. Minami, T., Semicond. Sci. Technol., 20, S35 (2005).Google Scholar
5. Meyer, B. K., Alves, H., Hofmann, D. M., Kriegseis, W., Forster, D., Bertram, F., Christein, J., Hoffmann, A., Straßburg, M., Dworzak, M., Haboeck, U., and Rodina, A. V., phys. stat. sol. (b), 241, 231 (2004).Google Scholar
6. Tsukazaki, A., Ohtomo, A., Onuma, T., Ohtani, M., Makino, T., Sumiya, M., Ohtani, K., Chichibu, S., Fuke, S., Segawa, Y., Ohno, H., Koinuma, H., and Kawasaki, M., Nature Materials, 4, 42 (2005).Google Scholar
7. Kaidashev, E. M., Lorenz, M., von Wenckstern, H., Rahm, A., Semmelhack, H. C., Han, K.-H., Benndorf, G., Bundesmann, C., Hochmuth, H., and Grundmann, M., Appl. Phys. Lett., 82, 3901 (2003).Google Scholar
8. Fons, P., Iwata, K., Niki, S., Yamada, A., and Matsubara, K., J. Cryst. Growth, 201-202, 627 (1999).Google Scholar
9. Miyamoto, K., Sano, M., Kato, H., and Yao, T., J. Cryst. Growth, 265, 34 (2004).Google Scholar
10. Ohtomo, A. and Tsukazaki, A., Semicond. Sci. Technol., 20, S1 (2005).Google Scholar
11. Lau, C. K., Tiku, S. K., and Lakin, K. M., J. Electrochem. Soc., 127, 1843 (1980).Google Scholar
12. Dai, J., Jiang, F., Pu, Y., Wang, L., Fang, W., and Li, F., Appl. Phys. A, 89, 645 (2007).Google Scholar
13. Chichibu, S. F., Onuma, T., Kubota, M., and Uedome, A., J. Appl. Phys., 99, 093505 (2006).Google Scholar
14. Ogata, K., Kawanishi, T., Maejima, K., Sakurai, S., Fujita, Sz., and Fujita, Sg., J. Cryst. Growth, 237-239, 553 (2002).Google Scholar
15. Chen, Y., Bagnall, D. M., Zhu, Z., Sekiuchi, T., Park, K., Hiraga, K., Yao, T., Koyama, S., Shen, M. Y., and Goto, T., J. Cryst. Growth, 181, 165 (1997).Google Scholar
16. Tsukazaki, A., Ohtomo, A., Kawasaki, M., Makino, T., Chia, C. H., Segawa, T., and Koinuma, H., Appl. Phys. Lett., 84, 3858 (2004).Google Scholar
17. Ohtomo, A., Kimura, H., Saito, K., Makino, T., Segawa, Y., Koinuma, H., and Kawasaki, M., J. Cryst. Growth, 214/215, 284 (2000).Google Scholar
18. Tampo, H., Yamada, A., Fons, P., Shibata, H., Matsubara, K., Iwata, K., Niki, S., Nakahara, K., and Takasu, H., Appl. Phys. Lett., 84, 4412 (2004).Google Scholar
19. Heinze, S., Dadgar, A., Bertram, F., Krtschil, A., Bläsing, J., Witte, H., Tiefenau, S., Hempel, T., Diez, A., Christen, J., and Krost, A., Proc. SPIE, 6474, 647406–1 (2007).Google Scholar
20. Dai, J., Su, H., Wang, L., Pu, Y., Fang, W., and Jiang, F., J. Cryst. Growth, 290, 426 (2006).Google Scholar
21. Sano, M., Miyamoto, K., Kato, H., and Yao, T., Jpn. J. Appl. Phys., 42, L1050 (2003).Google Scholar
22. Miyamoto, K., Sano, M., Kato, H., and Yao, T., Jpn. J. Appl. Phys., 41, L1203 (2002).Google Scholar