Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T08:33:37.609Z Has data issue: false hasContentIssue false

Deposition of Cubic-SiC Thin Films on Si (111) using the Molecular Ion Beam Technique

Published online by Cambridge University Press:  10 February 2011

T. Matsumoto
Affiliation:
Plasma Physics Laboratory, Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 565–0871, Japan
K. Mimoto
Affiliation:
Plasma Physics Laboratory, Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 565–0871, Japan
M. Kiuchi
Affiliation:
Osaka National Research Institute, Midorigaoka 1–8–31, Ikeda, Osaka 563–8577, Japan
S. Sugimoto
Affiliation:
Plasma Physics Laboratory, Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 565–0871, Japan
S. Goto
Affiliation:
Plasma Physics Laboratory, Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 565–0871, Japan
Get access

Abstract

SiC thin films were formed on Si (111) at growth temperatures of 750–1000 °C using the molecular ion beam technique, with a precursor of methylsilicenium ions (SiCH3+). The chemical bindings and surface structures of SiC thin films were analyzed by Raman spectroscopy and reflection high-energy electron diffraction. As a result, 3C-SiC (111) was grown on Si (111) substrates without carbonized treatments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hofmann, J., Veprek, S. and Heindl, J., J. Appl. Phys. 85,2652 (1999).Google Scholar
2. Boo, J. H., Yu, K. S., Lee, M. and Kim, Y Appl. Phys. Lett. 66,3486 (1995).Google Scholar
3. Liaw, P. and Davis, R. F., J. Electrochem. Soc. 132,642 (1985).Google Scholar
4. Withrow, S. P., More, K. L., Zuhr, R. A. and Haynes, T. E., Vacuum 39,1065 (1989).Google Scholar
5. Rabalais, J. W., Low Energy Ion-Surface Interactions, (John Wiley & Sons, New York, 1994), p. 482.Google Scholar
6. Patai, S. and Rappoport, Z., The chemistry of organic silicon compounds Part 1, (John Wiley & Sons, New York, 1989), p. 191.Google Scholar
7. Lau, W. M., Feng, X., Bello, I. and Sant, S., Nucl. Instrum. Methods B59/60, 319 (1991).Google Scholar
8. Tatsuta, T., Tachibana, K. and Tsuji, O., Jpn. J. Appl. Phys. 33,6343 (1994).Google Scholar
9. Gordon, J. S., Armour, D. G., Donnelly, S. E., Berg, J. A. van den, Marton, D. and Rabalais, J. W., Nucl. Instrum. Methods B59/60, 313 (1991).Google Scholar
10. Steckl, A. J., Devrajan, J., Tlali, S., Jackson, H. E., Trarn, C., Gorin, S. N. and Ivanova, L. M., Appl. Phys. Lett. 69,3825 (1996).Google Scholar
11. Okumura, H., Sakuma, E., Lee, J. H., Mukaida, H., Misawa, S., Endo, K. and Yoshida, S., J. Appl. Phys. 61,1135 (1987).Google Scholar
12. Liu, C. W. and Sturm, J. C., J. Appl. Phys. 82,4559(1997).Google Scholar
13. Fissel, A., B. Schröter and Richter, W., Appl. Phys. Lett. 66,3183 (1995).Google Scholar