Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T03:24:23.994Z Has data issue: false hasContentIssue false

Density and sp3 Content in Diamond-Like Carbon Films by X-ray Reflectivity and Electron Energy Loss Spectroscopy

Published online by Cambridge University Press:  10 February 2011

A. Libassi
Affiliation:
Department of Physics, University of Durham, Durham, DHI 3LE, UK
A. C. Ferrari
Affiliation:
Department of Engineering, University of Cambridge, Cambridge, CB2 IPZ, UK
V. Stolojan
Affiliation:
Cavendish Laboratories, University of Cambridge, Cambridge CB3 OHE, UK
B. K. Tanner
Affiliation:
Department of Physics, University of Durham, Durham, DHI 3LE, UK
J. Robertson
Affiliation:
Department of Engineering, University of Cambridge, Cambridge, CB2 IPZ, UK
L. M. Brown
Affiliation:
Cavendish Laboratories, University of Cambridge, Cambridge CB3 OHE, UK
Get access

Abstract

Grazing angle x-ray reflectivity (XRR) is used to study density, thickness, internal layering and roughness of a variety of carbon samples, with and without hydrogen and nitrogen. The bulk mass density of optimised tetrahedral amorphous carbon (ta-C) is 3.26 g/cm2, for which Electron Energy Loss Spectroscopy (EELS) found a sp3 fraction of 85%. Combining XRR and EELS we benchmark the dependence of sp3 fraction on density for hydrogen-free carbons. Hydrogenated ta-C (ta-C:H) deposited by electron cyclotron wave resonance (ECWR) reactor from acetylene gas, has a density of 2.35 g/cm3, 75% sp3 and ∼30% hydrogen. These data provide a similar validation for density and sp3 EELS data for hydrogenated DLCs. XRR can also reveal internal layering in films, and indeed less dense layers may be found at the surface or interface of ta-C films, but no such layers are found in ta-C:H films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Toney, F. and Brennan, S., J. Appl. Phys. 66, 1861 (1989)Google Scholar
2. Lucas, A., Nguyen, T. D. and Kortright, J. B., Appl. Phys. Lett. 59, 2100 (1991)Google Scholar
3. Logothetidis, S., Stergioudis, G., Appl. Phys. Lett., 71, 2463 (1997)Google Scholar
4. Zhang, Q., Yoon, S. F., Rusli, Ahn, J., Yang, H. and Bahr, D., J. Appl. Phys. 86, 289 (1999)Google Scholar
5. Lengeler, B., x-ray Absorption and Reflection in the Hard X-Ray Range, ed. by Campagna, M. and Rosei, K., North Holland (1990)Google Scholar
6. Davis, C. A., Knowles, K. M. and Amaratunga, G. A. J., Phys. Rev. Lett. 80, 3280 (1998)Google Scholar
7. McKenzie, D. R., Muller, D. and Pailthorpe, B. A., Phys. Rev. Lett 67, 773 (1991)Google Scholar
8. Fallon, P. J. et al. , Phys. Rev. B 48, 4777 (1993).Google Scholar
9. Lossy, R. et al. , J. Appl. Phys., 77, 4750 (1995)Google Scholar
10. Polo, M.C., Andujar, J. L., Hart, A., Robertson, J., Milne, W.I., Diamond Relat. Mats,(1999).Google Scholar
11. Rodil, S. E., Morrison, N. A., Robertson, J., Milne, W. I., Phys. Stat. Sol A, 337, 71 (1999)Google Scholar
12. Conway, N. M. J. et al. , Appl. Phys. Lett. 73, 2456 (1998).Google Scholar
13. Milani, P. et al. , J. Appl. Phys. 82, 5793 (1997).Google Scholar
14. Parrat, L. G., Phys. Rev. 95, 359 (1954)Google Scholar
15. Wormington, M. et al. , Phil. Mag. Lett., 74, 211 (1996).Google Scholar
16. Sinha, S. K., Sirota, E.N., Garoff, S., Phys. Rev. B 38, 2297 (1988)Google Scholar
17. McMullan, D., Fallon, P. J., Ito, J. and McGibbon, A. J., Electron Microscopy, vol 1, EUREM 92, Granada, Spain, p. 103, (1992)Google Scholar
18. Egerton, R. F., Electron Energy Loss Spectroscopy in the Electron Microscope, Plenum, New York (1996)Google Scholar
19. Berger, S. D., McKenzie, D. R. and Martin, P. J., Phil. Mag. Lett. 57, 285 (1988)Google Scholar
20. Menon, N. K. and Yuan, J., Ultramicroscopy 74, 83 (1998).Google Scholar
21. Weiler, M. et al. Phys. Rev. B, 53, 1594 (1996).Google Scholar