Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T03:11:54.754Z Has data issue: false hasContentIssue false

Degradation of InGaAs High Electron Mobility Transistors: The Role of Channel Composition and Thickness

Published online by Cambridge University Press:  26 February 2011

Marjohn Meshkinpour
Affiliation:
University of California, Los Angeles, CA 90024
Mark S. Goorsky
Affiliation:
University of California, Los Angeles, CA 90024
Dwight C. Streit
Affiliation:
TRW Space and Electronics Group, Redondo Beach, CA 90278
Thomas R. Block
Affiliation:
TRW Space and Electronics Group, Redondo Beach, CA 90278
Mike Wojtowicz
Affiliation:
TRW Space and Electronics Group, Redondo Beach, CA 90278
Get access

Abstract

In this study, we examined the performance of AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistors with varying channel layer thicknesses for indium mole fractions of 0.21 and 0.24. For both compositions, we find that there is an optimum channel thickness above which the device performance is impaired. As expected the effective critical thickness of the In0.2iGa0.79As layer is higher. Surprisingly, however, transmission electron microscopy of the device structures indicates that the device performance is not impaired by the presence of a linear array of misfit dislocations. In fact, the devices with highest performance have misfit dislocations indicating that defect engineering may lead to improved performance in these structures. Furthermore, we find that device structures with poor performance have misfit dislocations along both of the <110> directions. Triple axis x-ray diffraction provides a non-destructive estimate of the dislocation densities present.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Matthews, J.W. and Blakeslee, A.E., J. Crys. Growth 27, 118 (1974).Google Scholar
2. Nguyen, L.D., Radulescu, D.C., Foisy, M.C., Tasker, P.J. and Eastman, L.F., IEEE Trans. Elec. Dev. 36, 833 (1989).Google Scholar
3. Peercy, P.S., Dodson, B.W., Tsao, J.Y., Jones, E.D., Meyers, D.R., Zipperian, T.E., Dawson, L.R., Biefield, R.M., Klem, J.F., and Hills, C.R., IEEE Elec. Dev. Lett. 9, 621 (1988).Google Scholar
4. Fischer-Colbrie, A. Miller, J.N., Laderman, S.S., Rosner, S.J. and Hull, R., J. Vac. Sci. Technol., B6 620 (1988).Google Scholar
5. Moll, N., Hueschen, M.R. and Fischer-Colbrie, A., IEEE Trans. Elec. Dev. 35, 878 (1988).Google Scholar
6. Streit, D.C., Jones, W.L., Sadwick, L.P., Kim, C.W., and Hwu, R.J., Appl. Phys. Lett. 58, 2273 (1991).Google Scholar
7. Schweizer, T., Kohler, K., Rothemund, W. and Ganser, P., Appl. Phys. Lett. 59, 2736 (1991).Google Scholar
8. Maezawa, K. and Mizutani, T., IEEE Trans. Elec. Dev. 37, 1416 (1990).Google Scholar
9. Streit, D.C., Tan, K.L., Dia, R.M., Liu, J.K., Han, A.C. and Velebir, J.R., IEEE Elec. Dev. Lett. 12, 149 (1991).Google Scholar
10. Meshkinpour, M., Goorsky, M.S., Chu, G., Streit, D.C., Block, T. and Wojtowicz, M., Appl. Phys. Lett. 66, 748 (1995).Google Scholar
11. Cullity, B.D., Elements of X-ray Diffraction, Second Edition, Addison-Wesley Publishing Company, Inc., London, c. 1978.Google Scholar
12. Albrecht, M., Strunk, H.P., Hull, R., and Bonar, J.M., Appl. Phys. Lett. 62, 2206 (1993).Google Scholar
13. Zou, J., Chou, C.T., Cockayne, D.J.H., Sikorski, A., and Vaughan, M.R., Appl. Phys. Lett. 65, 1647 (1994).Google Scholar
14. Chen, Y., Liliental-Weber, Z., Washburn, J., Klem, J.F., and Tsao, J.Y., Appl. Phys. Lett. 63, 2234 (1993).Google Scholar
15. Meshkinpour, M., Goorsky, M.S., Matney, K.M., Streit, D.C., and Block, T.R., J. Appl. Phys. 76, 3362 (1994).Google Scholar
16. Uchida, Y., Kakibayashi, H., and Goto, S., J. Appl. Phys. 74, 6720 (1993).Google Scholar