Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T02:50:46.584Z Has data issue: false hasContentIssue false

Deformation of Ni3Al Polycrystals at Extremely High Pressures

Published online by Cambridge University Press:  21 March 2011

John K. Vassiliou
Affiliation:
Dept. Physics, Villanova University, Villanova, PA 19085, USA
J.W. Otto
Affiliation:
Joint Research Center of the European Commission, Brussels, Belgium
G. Frommeyer
Affiliation:
MPI Eisenforschung, 40237 Dusseldorf, Germany Corresponding author: [email protected]
A. J. Viescas
Affiliation:
Dept. Physics, Villanova University, Villanova, PA 19085, USA
K. Bulusu
Affiliation:
Dept. Physics, Villanova University, Villanova, PA 19085, USA
H. Bellumkonda
Affiliation:
Dept. Physics, Villanova University, Villanova, PA 19085, USA
Get access

Abstract

The compression behavior in a multi-anvil apparatus of a foil of Ni3Al embedded in a pressure medium of NaCl has been studied by energy-dispersive X-ray diffraction (EDX). At ambient temperature, the pressure and stresses, determined from line positions of NaCl, were constant throughout the sample chamber. Line positions and line widths of NaCl reflections were reversible on pressure release. Ni3Al polycrystals, in contrast, undergo extensive (ductile) plastic deformation above 4 GPa due to the onset of high non-hydrostatic stresses and the introduction of stacking faults and dislocations. Plastic deformation due to stacking faults leads to a volume incompressibility followed by elastic compression of a fully plastically deformed state. The compression of a fully plastically deformed material is elastic and isotropic, independent of the presence and type of pressure medium. A discontinuity in the compressibility at the transition back from plastic to elastic compression is due to the yield strength of the plastically deformed material and corresponds to the Hugoniot elastic limit.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hull, D. and Bacon, D.J., Introduction to Dislocations, Pergamon Press, Oxford, 1984.Google Scholar
2. Poirier, J. P., Creep of Crystals, Cambridge Univ. Press, Cambridge, 1985.Google Scholar
3. Otto, J.W., Vassiliou, J.K. and Frommeyer, G., J. Synchr. Rad. 4, 155 (1997).Google Scholar
4. Otto, J.W., Vassiliou, J.K. and Frommeyer, G., Phys. Rev., B 57, 3253 (1998);Google Scholar
Otto, J.W., Vassiliou, J.K. and Frommeyer, G., Phys. Rev., B 57, 3264 (1998).Google Scholar
5. Le Bihan, T., Heathman, S., Darracq, S., Abraham, C., Winand, J.M. and Benedict, U., High Temperatures-High Pressures, 27/28, 157 (1996).Google Scholar
6. Otto, J.W., Vassiliou, J.K. and Frommeyer, G., J. High Pressure Research 16, 45 (1998).Google Scholar
7. Yamaguchi, M. and Umakoshi, Y., Progress in Materials Science, 34, 149 (1990).Google Scholar
8. Decker, D.L., J. Appl. Phys., 42, 3239 (1971).Google Scholar
9. Uchida, T., Funamori, N. and Yagi, T., J. Appl. Phys. 80, 739 (1996).Google Scholar
10. Singh, A.K., J. Appl. Phys. 73, 4278 (1993).Google Scholar
11. Frankel, J., Vassiliou, J.K., Jamieson, J.C., Dandekar, D.P. and Scholz, W., Physica, B139 & 140, 198 (1986).Google Scholar
12. Warren, B. E., X-ray diffraction, Dover Reprint (1990).Google Scholar
13. Williamson, G. K. and Hall, W. H., Acta Metall. 1, 22 (1953).Google Scholar
14. Warren, B. E. and Averbach, B. L., J. Appl. Phys. 21, 595 (1950); 23, 497 (1952).Google Scholar
15. Langford, J. L., J. Appl. Crystallogr. 11, 10 (1978).Google Scholar
16. Langford, J. L., Delhez, R., de Keijser, Th. H., and Mittemeijer, E. J., Aust. J. Phys. 41, 173 (1988).Google Scholar
17. de Keijser, Th. H., Langford, J. L., Mittemeijer, E. J., and Vogel, A. B. P., J. Appl. Crystallogr. 15, 308 (1982).Google Scholar
18. Stokes, A. R. and Wilson, A. J., Proc. Cambridge Phil. Soc. 38, 313 (1942); Proc. Phys. Soc. London 56, 283 (1944).Google Scholar
19. Mauer, F., Munro, R. G., Piermarini, G. J., Block, B. C. and Dandekar, P. D., J. Appl. Phys. 58, 3727 (1985).Google Scholar
20. Otto, J.W., Vassiliou, J.K. and Frommeyer, G., Rev. High Pressure Sci. Technol., Vol. 7, 1511 (1998).Google Scholar
21. Sizek, H. W. and Gray, G. T. III, Acta Metall. Mater., 41, 1885 (1993).Google Scholar
22. Albert, D. E. and Gray, G. T. III, Philosophical Magazine, A70, 145 (1994).Google Scholar
23. Lutteroti, L., Gialanella, S. and Caudron, R., Materials Science Forum, 228–231, 551 (1996).Google Scholar
24. Hemker, K. J. and Mills, M. J., Philosophical Magazine, A68, 305 (1993).10.1080/01418619308221207Google Scholar
25. Baker, I. and Schulson, E. M., Phys. Stat. Sol. (a) 89, 163172, (1985).Google Scholar