Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T09:59:17.245Z Has data issue: false hasContentIssue false

Deformation Mechanisms in Natural Polymer Fibers and Composites

Published online by Cambridge University Press:  17 March 2011

Robert J. Young
Affiliation:
Manchester Materials Science CentreUMIST/University of Manchester, Manchester M1 7HS, United Kingdom
Stephen J. Eichhorn
Affiliation:
Manchester Materials Science CentreUMIST/University of Manchester, Manchester M1 7HS, United Kingdom
J. Sirichaisit
Affiliation:
Manchester Materials Science CentreUMIST/University of Manchester, Manchester M1 7HS, United Kingdom
Victoria L. Brookes
Affiliation:
Manchester Materials Science CentreUMIST/University of Manchester, Manchester M1 7HS, United Kingdom
Get access

Abstract

The molecular deformation of both silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks has been studied using a combination of mechanical testing and Raman spectroscopy. It was found that both materials have well-defined Raman spectra and that some of the bands in the spectra shift to lower wavenumber under the action of tensile stress or strain. The band shift was linearly dependent upon stress for both types of silk fiber for the 1085/1095 cm-1 band. This observation provides a unique insight into the effect of tensile deformation upon molecular structure and the relationship between structure and mechanical properties. The measurement of micromechanical deformation within samples of wood, flax and hemp fibers using Raman spectroscopy is also reported. Upon tensile deformation of the samples it was found that the characteristic Raman peak for cellulose, located at 1095 cm-1, shifted towards a lower wavenumber, indicating that the polymer chains within the cellulose were also being deformed. The magnitude of the shift with strain was found to be similar for all samples. No shift occurred of the peak that is characteristic of the non-load-bearing lignin (1600 cm-1) in the wood samples due to its amorphous structure. The similarities between the Raman band shifts in silk and cellulose are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mitra, V. K., Risen, W. M. Jr, and Baughman, R. H., J. Chem. Phys. 66, 2731 (1977).Google Scholar
2. Young, R. J., J. Text. Inst. 86, 360 (1995).Google Scholar
3. Batchelder, D. N. and Bloor, D.. J. Polym. Sci. Polym. Phys. Edn. 17, 569 (1979).Google Scholar
4. Gosline, J. M, DeMont, M. E. and Denny, M. W., Endeavour 10, 37 (1986).Google Scholar
5. Vollrath, F., ACS Symposium 544; Silk Polymers, American Chemical Society, Washington, 1994, p17.Google Scholar
6. Vollrath, F., Scientific American 70-76, March 1992.Google Scholar
7. Shen, Y., Johnson, M. A. and Martin, D. C., Macromolecules 31, 8857 (1998).Google Scholar
8. Somashekar, R. and Gopalkrishne, R., Polymer 36, 2007 (1995).Google Scholar
9. Parthasarathy, K. M., Nash, M. D., Arurnugam, V., Subramaniam, V. and Sanjeen, R., J. Appl. Polym. Sci. 59, 2049 (1996).Google Scholar
10. Coleman, D. and Howitt, F. O., Proc. Roy. Soc. A190, 145 (1947).Google Scholar
11. Xu, M. and Lewis, R. V., Proc. Natl. Acad. Sci. 87, 7120 (1990).Google Scholar
12. Gillespie, D. B., Viney, C. and Yager, P., ACS Symposium 544, Silk Polymers, American Chemical Society, Washington, 1994, p155.Google Scholar
13. Sirichaisit, J., Young, R. J. and Vollrath, F., Polymer 41, 1223 (2000).Google Scholar
14. Hamad, W. Y. and Eichhorn, S. J.. ASME J. Eng. Mat. Tech. 119, 309 (1997).Google Scholar
15. Eichhorn, S.J., Young, R. J. and Yeh, W.-Y., Textile Res. J. 71, 121 (2001).Google Scholar
16. Eichhorn, S.J., Sirichaisit, J. and Young, R.J., J. Mat. Sci. 36, 3129 (2001).Google Scholar
17. Edwards, H. M. G., Farwell, D.W. and Webster, D., Spectrochimic Acta A, 53, 2383 (1997).Google Scholar
18. Atalla, R. H., J. Wood Chem. Technol. 7, 115 (1987).Google Scholar
19. Panshin, A.J. and Zeeuw, C. de, Textbook of Wood Technology. (McGraw-Hill, New York, 1970)Google Scholar
20. Navi, P., Rastogi, P. K., Gresse, V., and Tolou, A., Wood Sci. Tech. 29, 411 (1995).Google Scholar
21. Gordon-Cook, J., Handbook of Textile Fibers. (Merrow Publishing Ltd., 1984).Google Scholar
22. Davies, G. C. and Bruce, D. M., J. Mat. Sci. 32, 5425 (1997).Google Scholar
23. Pérez-Rigueiro, J., Viney, C., Llorca, J. and Elices, M., J. Appl. Polym. Sci. 70, 2439 (1998).Google Scholar
24. Entwistle, K. M. and Terrill, N. J., J. Mat. Sci. 35, 1675 (2000).Google Scholar
25. Xue, G., Prog. Polym. Sci. 19, 317 (1994).Google Scholar
26. Yamaura, K., Okumura, Y. and Matsukawa, S., J. Macromol. Sci. Phys. B21, 49 (1982).Google Scholar
27. Edwards, H. G. M. and Farwell, D. W., J. Raman Spect. 26, 901 (1995).Google Scholar
28. Tashiro, K., Prog. Polym. Sci. 18, 337 (1993).Google Scholar
29. Yeh, W.-Y. and Young, R. J., J. Macromol. Sci., Phys. 37, 83 (1998).Google Scholar
30. Atalla, R. H. and Agarwal, U. P., Science 227, 63 (1985).Google Scholar
31. Grubb, D. T. and Jelinski, L. W., Macromolecules 30, 2860 (1997).Google Scholar
32. Termonia, Y., Macromolecules 27, 7378 (1994).Google Scholar
33. Northolt, M. G. and Hout, R. van der, Polymer 26, 310 (1985).Google Scholar
34. Baltussen, J. J. M., Ph.D. Thesis, Technical University of Delft, 1996.Google Scholar
35. Hull, D. and Clyne, T. W., An Introduction to Composite Materials, 2nd ed., (Cambridge University Press, 1996).Google Scholar