Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T09:22:43.230Z Has data issue: false hasContentIssue false

Deep Electron Traps In Mbe Gaas On Si

Published online by Cambridge University Press:  28 February 2011

K. Nauka
Affiliation:
Hewlett Packard Laboratories, Palo Alto, CA 94304
G.A. Reid
Affiliation:
Hewlett Packard Laboratories, Palo Alto, CA 94304
S.J. Rosner
Affiliation:
Hewlett Packard Laboratories, Palo Alto, CA 94304
S.M. Koch
Affiliation:
Stanford Electronics Lab, Stanford University, Stanford, CA 94305
J.S. Harris
Affiliation:
Stanford Electronics Lab, Stanford University, Stanford, CA 94305
Get access

Abstract

Deep electron traps were investigated in MBE GaAs grown directly on Si substrates with orientations a few degrees off the <100> axis. Capacitance Deep Level Transient Spectroscopy (CDLTS) revealed the presence of eleven electron traps in the GaAs epilayer. Their activation energies ranged from 0.21 eV to 0.83 eV below the conduction band. Most of these traps were previously observed in homoepitaxial GaAs films grown under As-rich conditions (VPE, MBE), or in electron irradiated bulk GaAs. Trap concentrations tracked Si dopant density and MBE growth conditions. Observed deep levels are not introduced by metals or other contaminants present at the GaAs-Si interfaces. Rather, they are caused by defect complexes. These complexes involve native point defects, whose formation is favoured by As-rich environments, by lattice mismatch, and by different thermal expansion coefficients. Si dopant atoms may also participate in the formation of these defects. A similar deep level generation mechanism is proposed for the electron traps in homoepitaxial MBE GaAs layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Aksun, M.I., Morkoc, H., Lester, L.F., Duh, K.H.G., Smith, P.M., Chao, P.C., Longerbone, M., Erickson, L.P., Appl.Phys.Lett. 49, 1654 (1986)Google Scholar
2. Fischer, R.F., Kopp, W.F., Gedymin, J.S., Morkoc, H., IEEE Trans. ED–33. 1407 (1986)Google Scholar
3. Hashimoto, A., Kawarada, Y., Kanijoh, T., Akiyama, A., Watanabe, N., Sakuta, M., Appl.Phys.Lett. 48, 1617 (1986)Google Scholar
4. Sakai, S., Soga, T., Takeyasu, M., Umeno, M., Jpn.J.Appl.Phys. 24, L666 (1985)Google Scholar
5. Choi, H.K., Turner, G.W., Tsaur, B-Y., Windhorn, T.H., MRS Symp.Proc. Vol. 67, p.167, MRS 1986 Google Scholar
6. Kroemer, H., MRS Symp.Proc. Vol.67, p.3, MRS 1986 Google Scholar
7. Koch, S.M., Rosner, S.J., Schlom, D., Harris, J.S., MRS Symp.Proc. Vol.67, p.37, MRS 1986 Google Scholar
8. Rosner, S.J., Koch, S.M., Laderman, S., Harris, J.S., MRS Symp.Proc. Vol.67, p.77, MRS 1986 Google Scholar
9. Fischer, R., Masselink, W.T., Klem, J., Henderson, T., McGlinn, T.C., Klein, M.V., Morkoc, H., Mazur, J.H., Washburn, J., J.Appl.Phys. 58, 374 (1985)Google Scholar
10. Lang, D.V., Cho, A.Y., Gossard, A.C., Ilegems, M., Wiegmann, W., J.Appl.Phys. 47, 2558 (1976)Google Scholar
11. Martin, G.M., Mitonneau, A., Mircea, A., Electron.Lett. 13, 191 (1977)Google Scholar
12. Blood, P., Harris, J.J., J.Appl.Phys. 56, 993 (1984)Google Scholar
13. Skromme, B.J., Bose, S.S., Lee, B., Lepkowski, T.R., DeJule, R.Y., Stillman, G.E., Hwang, J.C.M., J.Appl Phys. 58, 4685 (1985)Google Scholar
14. Pao, Y-C., Lin, D., Lee, W.S., Harris, J.S., Appl.Phys.Lett. 48, 1291 (1986)Google Scholar
15. Allen, F.G., Electrochem Soc.Proc. Vol.85–7, p.3, Electrochem.Soc. 1985 Google Scholar
16. Lee, J.W., MRS Symp.Proc. Vol.67, p.29, MRS 1986 Google Scholar
17. Rosner, S.J., Koch, S.M., Harris, J.S., Appl.Phys.Lett. 49, 1764 (1986)Google Scholar