Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T18:27:41.007Z Has data issue: false hasContentIssue false

Deep centers in GaN layers grown on epitaxial lateral overgrowth templates by metalorganic chemical vapor deposition

Published online by Cambridge University Press:  01 February 2011

Serguei A Chevtchenko
Affiliation:
[email protected], Virginia Commonwealth University, Electrical Engineering, 601 West Main St., P.O. Box 843072, Richmond, VA, 23284-3072, United States, (804) 8277000 Ext. 451
J. Xie
Affiliation:
[email protected], Virginia Commonwealth University, Electrical Engineering Department, Richmond, VA, 23284-3072, United States
Y. Fu
Affiliation:
[email protected], Virginia Commonwealth University, Electrical Engineering Department, Richmond, VA, 23284-3072, United States
X. Ni
Affiliation:
[email protected], Virginia Commonwealth University, Electrical Engineering Department, Richmond, VA, 23284-3072, United States
H. Morkoç
Affiliation:
[email protected], Virginia Commonwealth University, Electrical Engineering Department, Richmond, VA, 23284-3072, United States
Get access

Abstract

The dependence of traps and their concentration in GaN on the quality of templates, on which the layers are grown, has been studied by deep-level transient spectroscopy (DLTS). Thin GaN layers studied were grown on GaN templates employing conventional epitaxial lateral overgrowth (ELO) and nano-ELO with SiNx nanonetwork. The concentrations of traps found in these layers were compared with a reference sample grown on a standard GaN template not utilizing ELO. Two traps A (0.55 eV – 0.58 eV) and B (0.20 eV – 0.23 eV) were detected in the temperature range from 80 K to 400 K. A reduction of traps in layers grown on the ELO and nano-ELO templates was noted. We attribute this reduction to the reduction of threading dislocation density and as a result reduced capture of point defects and complexes as part of dislocation core structure and/or reduced formation of defects and complexes in the vicinity of line defects where the formation can be energetically favorable.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Morkoç, H., Nitride Semiconductors and Devices (Springer, Berlin, second edition)Google Scholar
2 Lee, S. M., Belkhir, M. A., Zhu, X. Y., Lee, Y. H., Hwang, Y. G. and Frauenheim, T., Phys. Rev. B 61(23) (2000), p. 16033 Google Scholar
3 Elsner, J., Blumenau, A. Th., Frauenheim, T., Jones, R., and Heggie, M. I., MRS Internet J. Nitride Semicond. Res. 5S1 (2000), W9.3 Google Scholar
4 Elsner, J., Jones, R., Heggie, M. I., Sitch, P. K., Haugk, M., Frauenheim, Th., Öberg, S., Briddon, P. R., Phys. Rev. B 58(19) (1998), p. 12571 Google Scholar
5 Gibart, Pierre, Rep. Prog. Phys. 67 (2004), p. 667.Google Scholar
6 Pakula, K., Bozek, R., Baranowski, J. M., Jasinski, J., Liliental-Weber, Z., J. Cryst. Growth 267 (2004), p. 1 Google Scholar
7 Yun, F., Moon, Y.-T., Fu, Y., Zhu, K., Özgür, Ü., Morkoç, H., Inoki, C. K., Kuan, T. S., Sagar, A., and Feenstra, R. M., J. Appl. Phys. 98 (2005), p. 123502 Google Scholar
8 Xie, Jinqiao, Özgür, Ü., Fu, Y., Ni, X., Morkoç, H., Inoki, C. K., Kuan, T. S., Foreman, J. V. and Everitt, H. O., “Low dislocation densities and long carrier lifetimes in GaN thin films on SiNx nanonet”, Appl. Phys. Lett. PendingGoogle Scholar
9 Götz, W., Johnson, N. M., Amano, H., Akasaki, I., Appl. Phys. Lett. 65(4), (1994), p. 463 Google Scholar
10 Fang, Z.-Q., Look, D. C., Kim, W., Fan, Z., Botchkarev, A. and Morkoç, H., Appl. Phys. Lett. 72(18) (1998), p. 2277 Google Scholar
11 Fang, Z.-Q., Look, D. C., Visconti, P., Wang, D.-F., Lu, C.-Z., Yun, F., Morkoç, H., Park, S. S., Lee, K. Y., Appl. Phys. Lett. 78(15), (2001), p. 2178 Google Scholar
12 Hacke, P., Detchprohm, T., Hiramatsu, K., Sawaki, N., Tadatomo, K., Miyake, K., J. Appl. Phys. 76(1), (1994), p. 304 Google Scholar
13 Moon, Y. T., Fu, Y., Yun, F., Dogan, S., Mikkelson, M., Johnstone, D., and Morkoç, H., Phys. Stat. Sol. (a) 202(5), (2005), p. 718 Google Scholar
14 Sagar, A., Feenstra, R. M., Inoki, C. K., Kuan, T. S., Fu, Y., Moon, Y. T., Yun, F., and Morkoç, H. , Phys. Stat. Sol. (a) 202 (2005), p. 722 Google Scholar
15 Haase, D., Schmid, M., Kürner, W., Dörnen, A., Härle, V., Scholz, F., Burkard, M., and Schweizer, H., Appl. Phys. Lett. 69(17), (1996), p. 2525 Google Scholar
16 Cho, H. K., Kim, C. S., and Hong, C.-H., J. Appl. Phys. 94(3) (2003), p. 1485 Google Scholar
17 Fang, Z-Q., Look, D. C. and Polenta, L., J. Phys.: Condens. Matter 14 (2002), p. 13061 Google Scholar
18 Jenkins, D. W. and Dow, J. D., Phys. Rev. B 39 (1989), p. 3317.Google Scholar
19 Lee, W. I., Huang, T. C., Guo, J. D., and Feng, M. S., Appl. Phys. Lett. 67, (1995), p. 1721 Google Scholar
20 Xie, J., Fu, Y., Ni, X., Chevtchenko, S., and Morkoç, H., Appl. Phys. Lett. 89, (2006), p. 152108 Google Scholar
21 Wright, A. F. and Grossner, U., Appl. Phys. Lett. 73(9) (1998), p. 2751 Google Scholar
22 Omling, P., Weber, E. R., Montelius, L., Alexander, H., and Michel, J., Phys. Rev. B 32(10) (1985), p. 6571 Google Scholar
23 Yastrubchak, O., Wosinski, T., Makosa, A., Figielski, T., and Toth, A. L., Physica B 308–310 (2001), p. 757 Google Scholar