Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T02:52:37.282Z Has data issue: false hasContentIssue false

Damping and Stiffness Enhancement in Composite Systems with Carbon Nanotubes Films

Published online by Cambridge University Press:  11 February 2011

E. A. Lass
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180–3590, USA
N. A. Koratkar
Affiliation:
Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180–3590, USA
P. M. Ajayan
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180–3590, USA
B. Q. Wei
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180–3590, USA
P. Keblinski
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180–3590, USA
Get access

Abstract

Structural damping is an essential design parameter for many engineering applications. We demonstrate here the potential for the use of multi-walled carbon nanotube films in structural systems where vibrational energy dissipation is important. These films can provide a light weight, minimally intrusive alternative to conventional damping materials such as visco-elastic polymers. In addition, because of their multifaceted properties, damping materials utilizing carbon nanotubes are expected to be superior to traditional materials and may enhance the performance of the system by increasing structural stiffness and thermal stability.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lu, J.P., Phys. Rev. Lett. 79, 1297 (1997).Google Scholar
2. Hernandez, E., Goze, C., Bernier, P., Rubio, A., Phys. Rev. Lett. 80, 4502 (1998).Google Scholar
3. Treacy, M. M. J., Ebbesen, T. W., Gibson, J. M., Nature 381, 678 (1996).Google Scholar
4. Poncharal, P., Wang, Z.L., Ugarte, D., de Heer, W.A., Science 283, 1513 (1999).Google Scholar
5. Yu, M., Lourie, O., Dyer, M. J., Moloni, K., Kelley, T. F., Ruoff, R. S., Science 287, 637(2000).Google Scholar
6. Liao, W. H., Wang, K. W., Journal of Sound and Vibration 207, 319 (1997).Google Scholar
7. Brackbill, C., Ruhl, L. E., Lesieutre, G. A., Smith, E. C., Journal of the American Helicopter Society 45, 34 (2000).Google Scholar
8. Baz, A., Poh, S., Journal of Shock and Vibration 7, 81 (2000).Google Scholar
9. Davis, C. L., Lesieutre, G. A., Journal of Sound and Vibration 232, 601 (2000).Google Scholar
10. Zhang, Z. J., Wei, B. Q., Ramanath, G., Ajayan, P. M., Appl. Phys. Lett. 77, 3764 (2000).Google Scholar
11. Wei, B. Q., Zhang, Z. J., Ramanath, G., Ajayan, P. M., Appl. Phys. Lett. 77, 2985 (2000).Google Scholar
12. Wei, B. Q., Koratkar, N., Ajayan, P. M., “Non-intrusive damping films featuring carbon nanotubes”, Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, Colorado, April 2225, 2002.Google Scholar
13. Koratkar, N., Chopra, I., AIAA Journal 38, 1113 (2000).Google Scholar
14. 3M Bonding Systems Division, “Material Data Sheets”, 3M Center, Building 220–7E-01, St. Paul, MN, 55144–1000, February 1999.Google Scholar
15. Biggerstaff, J. M., Kosmatka, J. B., J. Comp. Mater. 32, 21 (1998).Google Scholar