Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T14:36:21.024Z Has data issue: false hasContentIssue false

Cytotoxicity of the Functionalized Gold and Silver Nanorods

Published online by Cambridge University Press:  01 February 2011

Chiung-Wen Kuo
Affiliation:
[email protected], Academia Sinica, Research Center for Applied Sciences, 128, Sect 2, Academia Rd. Nankang, Taipei, 115, Taiwan, 886-2-27898000, 886-2-27896735
Jun-Jung Lai Lai
Affiliation:
[email protected], Academia Sinica, Research Center for Applied Sciences, 128, Sect 2, Academia Rd. Nankang, Taipei, 115, Taiwan
Peilin Chen
Affiliation:
[email protected], Academia Sinica, Research Center for Applied Sciences, 128, Sect 2, Academia Rd. Nankang, Taipei, 115, Taiwan
Get access

Abstract

The cytotoxicity of various surface functionalized gold and silver nanords was measured by MTT assays for two cell lines, fibroblast and HeLa. It was found that the functionalized nanorods with 200 nm diameter and length up to a few micrometer can be readily internalized by both types of cells regardless of the surface functionalization. However, the cytotoxicity of the nanorods was found to depend on the polarity of the surface charge. The positively charged amino end group on the nanorod surface was found to be the least toxic whereas the negatively charged carboxylic acid end group on the nanorod surface caused lots of cell death. In general, the functionalized nanorods were found to be more toxic than the serum coated nanorods.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Handbook of Nanostructured Materials and Nanotechnology, (Nalwa, H.S., Editor), Academic Press, New York.Google Scholar
2. Nam, J.-W., Thaxton, C.S., Mirkin, C.A., Science, 2003, 301, 18841886.Google Scholar
3. Xiao, Y., Patolsky, F., Katz, E., Hainfeld, J.F., Willner, I, Science, 2003, 299, 18771881.Google Scholar
4. Zhao, X., Hilliard, L.R., Mechery, S.H., Wang, Y., Bagwe, R.P., Jin, S., Tan, W., Proc. Natl. Acad. Sci. USA, 2004, 101, 1502715032.Google Scholar
5. Hutter, E., Fendler, J.H.,. Adv. Mater. 2004, 16, 16851706.Google Scholar
6. Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., Weiss, S., Science, 2005, 307, 538544.Google Scholar
7. Medintz, I.L., Uyeda, H.T., Goldman, E.R., Mattoussi, H., Nat. Mater. 2005, 4, 435446.Google Scholar
8. Gao, X., L.Yang, Petros, J.A., Marshall, F.F., Simons, J.W., Nie, S., Curr. Opin. Biotechnol., 2005, 16, 6372.Google Scholar
9. Sonnichsen, C., Reinhard, B.M., Liphardt, J., Alivisatos, A.P., Nat. Biotechnol. 2005, 23, 741745.Google Scholar
10. Derfus, A.M., Chan, W.C.W., Bhatia, S.N., Nano Lett. 2004, 4, 1118.Google Scholar
11. Hoshino, A., Fujioka, K., Oku, T., Suga, M., Sasaki, Y.F., Ohta, T., Yasuhara, M., Suzuki, K., Yamamoto, K., Nano Lett. 2004, 4, 21632169.Google Scholar
12. Kirchner, C., Liedl, T., Kudera, S., Pellegrino, T., Javier, A.M., Gaub, H.E., Stolzle, S., Parak, W.J., Nano Lett. 2005, 5, 331338.Google Scholar
13. Chithrani, B.D., Ghazani, A.A., Chan, W.C.W., Nano Lett. 2006, 6, 662668.Google Scholar
14. Goodman, C.M., McCusker, C.D., Yilmaz, T., Rotello, V.M., Bioconjugate Chem. 2004, 15, 897900.Google Scholar
15. Connor, E.E., Mwamuka, J., Gole, A., Murphy, C.J., Wyatt, M.D., Small 2005, 1, 325327.Google Scholar
16. Takahashi, H., Niidome, Y., Niidome, T., Kaneko, K., Kawasaki, H., Yamada, S., Langmuir 2006, 22, 25.Google Scholar
17. Han, G., Martin, C.T., Rotello, V.M., Chem. Biol. Drug Des. 2006, 67, 7882.Google Scholar
18. Lin, C.-C., Yeh, Y.-C., Yang, C.Y., Chen, C.-L., Chen, G.-F., Chen, C.-C., Wu, Y.-C., J. Am. Chem. Soc. 2002, 124, 35083509.Google Scholar
19. Wang, J., Small 2005, 1, 10361043.Google Scholar
20. Katz, E., Willner, I., Angew. Chem. Int. Ed. 2004, 43, 60426108.Google Scholar
21. Shen, H., J. Tan. Saltzman, W.M., Nat. Mater. 2004, 3, 569574.Google Scholar
22. Salem, A.K., Searson, P.C., Leong, K.W., Nat. Mater. 2003, 2, 668671.Google Scholar
23. Sandhu, K.K., McIntosh, C.M., Joseph, J.M., Smith, S.W., Rotello, V.M., Bioconjugate Chem. 2002, 13, 36.Google Scholar
24. Thomas, M., Klibanov, A.M., Proc. Natl. Acad. Sci. USA, 2003, 100, 91389143.Google Scholar
25. Rosi, N.L., Giljohann, D.A., Thaxton, C.S., Lytton-Jean, A.K.R., Han, M.S., Mirkin, C.A., Science, 2006, 312, 10271030.Google Scholar