Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T08:18:44.412Z Has data issue: false hasContentIssue false

Cu Grain Boundary Embrittlement by Liquid Hg: A Comparison between Experiment and ab-initio Modeling

Published online by Cambridge University Press:  18 October 2013

Julien Colombeau
Affiliation:
MSSMat laboratory, UMR CNRS 8579, Ecole Central Paris, Chatenay-Malabry, France
Thierry Auger
Affiliation:
MSSMat laboratory, UMR CNRS 8579, Ecole Central Paris, Chatenay-Malabry, France
Duane Johnson
Affiliation:
Ames laboratory, Iowa State University, Ames, Iowa, USA
Linlin Wang
Affiliation:
Ames laboratory, Iowa State University, Ames, Iowa, USA
Get access

Abstract

We have studied the LME phenomenon for the Cu/Hg couple, from an experimental and a computational point of view. We compared the LME behavior of standard oxygen free high conductivity (OFHC) copper with Grain Boundary Engineered (GBE) copper (containing a high fraction of special Σ3 GBs). Experimentally, we find that special Σ3 GBs in copper are less prone than general GB to LME by liquid mercury. In parallel, we have investigated the difference in LME induced fracture between the symmetric Σ3(111)[110]70.5° tilt GB and the symmetric Σ5(210)[100]36.87° tilt GB by ab-initio calculations. The Hg segregation trend has been evaluated for these 2 GBs. Ab-initio tensile tests on the Σ3(111) GB with and without segregated Hg atoms have been performed. Finally solid/liquid interfaces have been modeled using ab-initio molecular dynamics (AIMD) in order to calculate solid-liquid surface energies (γSL). Using a Griffith approach, we have evaluated the energy difference γGB - 2 γSL. The LME mechanism in Cu/Hg is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliographie

Luo, J., Cheng, H., Meshinchi Asl, K., Kiely, C. J., Harmer, M. P.. Science. 2011, Vol. 333.Google Scholar
Alber, U., Müllejans, H., Rühle, M.. Acta Metallurgica. 1999, Vol. 47, 15, pp. 40474060.Google Scholar
Schweinfest, R., Paxton, A. T., Finnis, M. W.. Nature. 2004, Vol. 432.10.1038/nature03198CrossRefGoogle Scholar
Messmer, R. P., Briant, C. L.. Acta Metall. 1982, Vol. 30, 457467.10.1016/0001-6160(82)90226-7CrossRefGoogle Scholar
Randle, V., Coleman, M.. Acta Materialia. 2009, Vol. 57, 34103420.10.1016/j.actamat.2009.04.002CrossRefGoogle Scholar
Kresse, G., Furthmüller, J.. Physical Review B. 1996, Vol. 54, 11169.10.1103/PhysRevB.54.11169CrossRefGoogle Scholar
Perdew, J. P., Burke, K., Ernzerhof, M.. Physical Review Letter. 1996, Vol. 77, 3865–68.10.1103/PhysRevLett.77.3865CrossRefGoogle Scholar
Tschopp, M.A., McDowell, D.L.. Philosophical Magazine. 2007, Vol. 87, 22, 31473173.10.1080/14786430701255895CrossRefGoogle Scholar
Wolf, U., Ernst, F., Muschik, T., Finnis, M. W., Fischmeister, H.F.. Philosophical Magazine A. 1992, Vol. 66, 6, 9911016.10.1080/01418619208248003CrossRefGoogle Scholar