Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T09:32:02.668Z Has data issue: false hasContentIssue false

Crystallization of Glassy Powder from Aluminum-Rare Earth- Transition Metal Alloys

Published online by Cambridge University Press:  11 February 2011

A.L. Vasiliev
Affiliation:
Department of Metallurgy and Materials Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT 06269–3136, USA.
M. Aindow
Affiliation:
Department of Metallurgy and Materials Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT 06269–3136, USA.
M.J. Blackburn
Affiliation:
Department of Metallurgy and Materials Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT 06269–3136, USA.
T.J. Watson
Affiliation:
Pratt & Whitney, Materials & Processes Engineering, Structural Alloys & Processes, 400 Main, Street, Mail Stop 114–40, East Hartford, CT 06108, USA
Get access

Abstract

The microstructures exhibited by gas atomized powders of two alloys, Al-6Gd-6Ni-1Fe and Al-5Y-10Ni (at. %), have been analyzed using electron microscopy. It was found that the microstructure depends critically on the particle size obtained during atomization. Small particles (<1μm) tend to be completely amorphous. Larger particles (1–10μm) can also be amorphous, but often contain a mixture of amorphous material and crystalline Al. Three distinct morphologies are observed: nanocrystalline particles, fractal and dendritic growths embedded in an amorphous matrix. The yet larger particles (>30μm) are often fully crystalline, consisting of fine interspersed Al and intermetallic grains.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. He, Y., Poon, S.J. and Shiflet, G.J., Science, 241, 1640 (1988).Google Scholar
2. Inoue, A., Ohtera, K., Tsai, A.P. and Masumoto, T., Jap. J.Appl. Phys., 27, L280, L479 (1988).Google Scholar
3. Inoue, A., Kimura, H., Mat. Sci. Eng., A286, 1 (2000).Google Scholar
4. Latuch, J., Matyja, H., Fadeeva, V.I., Mater. Sci. Eng., A179/A180, 506 (1994).Google Scholar
5. Latuch, J., Zielinski, W., Matyja, H., J. Appl. Crystall., 17, 152 (1998).Google Scholar
6. Li, Q., Johnson, E., Madsen, M.B., Johansen, A. and Sarholt-Kristensen, L., Phil. Mag. B, 66, 427 (1992).Google Scholar
7. Chang, I.T.H., Svec, P., Godebakan, M. and Cantor, B., Mater. Sci. Forum, 225–227, 335 (1996).Google Scholar
8. Kulik, T. and Latuch, J. Mat. Sci. Forum, 360–362, 194 (2001).Google Scholar
9. Zhong, Z.C., Jiang, X.Y., Greer, A.L., Mat. Sci. Eng. A 226–228, 531 (1997).Google Scholar
10. Kim, W.T., Gogebakan, M., Cantor, B., Mat. Sci. Eng. A 226–228, 178 (1997).Google Scholar
11. Inoue, A., Kita, K., Ohtera, K., Kimura, H., Masumoto, T., J. Mat. Sci. Let., 7, 1287 (1988).Google Scholar
12. Konno, T.J., Kawasaki, M. and Hiraga, K., Phil. Mag. B, 81, 1713 (2001).Google Scholar
13. Marioara, C.D., Andersen, S.J., Jansen, J. and Zandbergen, H.W., Acta Mater., 49, 321 (2001).Google Scholar
14. Higginson, R.L., Aindow, M., Bate, P.S., Phil. Mag. Let, 72, 193 (1995).Google Scholar