Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T11:50:04.982Z Has data issue: false hasContentIssue false

Crystallization of an Yttrium Aluminosilicate Glass for Nuclear Waste Immobilization

Published online by Cambridge University Press:  27 March 2012

Diana Carolina Lago
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Atómico Bariloche - Comisión Nacional de Energía Atómica. Instituto Balseiro. Universidad Nacional de Cuyo. Av. Ezequiel Bustillo Km. 9.5, (8400) San Carlos de Bariloche, Pcia. Río Negro – Argentina.
Diana Garcés
Affiliation:
Instituto Balseiro. Universidad Nacional de Cuyo. Av. Ezequiel Bustillo Km. 9.5, (8400) San Carlos de Bariloche, Pcia. Río Negro – Argentina.
Miguel Oscar Prado
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Atómico Bariloche - Comisión Nacional de Energía Atómica. Instituto Balseiro. Universidad Nacional de Cuyo. Av. Ezequiel Bustillo Km. 9.5, (8400) San Carlos de Bariloche, Pcia. Río Negro – Argentina.
Get access

Abstract

SiO2-Al2O3-Y2O3 glasses exhibit high glass transition temperatures, water corrosion resistance and good mechanical properties. These properties suggest that yttrium aluminosilicate glasses could potentially replace the borosilicate glasses usually used for immobilization of nuclear wastes. At the same time, yttrium can be used to simulate actinides.

During waste immobilization, crystallization of the glassy matrix must be avoided or at least controlled, thus, the understanding of glass crystallization kinetics is essential.

We found by XRD that the crystalline phases present on heat treatments are yttrium disilicate and sillimanite/mullite. By optical microscopy on polished cross-sections we could only identify highly yttrium enriched crystals which we associate with yttrium disilicate crystals.

In this paper we measure the surface density of nucleation sites Ns in as obtained splat cooled pieces obtaining values of about 1.5 · 1011 nucleus · m-2. Crystal growth rate U in the temperature range 1000-1040 oC varies in the range 8-13 μm · h-1. These data are useful for designing sintering or melting thermal paths of YAS glasses in order to control their microstructure. We show the effect of glass particle size on DTA results: crystallization peaks moves towards lower temperatures for smaller particle size, which confirms that mainly surface nucleation is taking place on heating.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kohli, J. T., Shelby, J. E., Phys. Chem. Glasses 32 (1991) 67.Google Scholar
2. Aronne, A., Esposito, S., Pernice, P., Mater. Chem. Phys. 51 (1997) 163.10.1016/S0254-0584(97)80287-8Google Scholar
3. Sadiki, N., Coutures, J., Fillet, C., Dussossoy, J., J. Nucl. Mat. 348 (2006) 7078.10.1016/j.jnucmat.2005.09.003Google Scholar
4. Hyatt, M. J., Day, D. E., J. Am. Ceram. Soc. 70 (1987) C283.10.1111/j.1151-2916.1987.tb04901.xGoogle Scholar
5. Bois, L., Barré, N., Guittet, M. J., Guillopé, S., Trocellier, P., Gautier, M., Verdier, P., Laurent, Y., J. Non-Cryst. Solids. 300 (2002) 141.Google Scholar
6. Makishima, A., Tamura, Y., Sakaino, T., J. Am. Ceram. Soc., 61 [5–6] 247-49 (1978).10.1111/j.1151-2916.1978.tb09291.xGoogle Scholar
7. Erbe, E., Day, D., J. Am. Ceram. Soc., 73 [9] 2708–13 (1990).10.1111/j.1151-2916.1990.tb06750.xGoogle Scholar
8. Prado, M. O., Fredericci, C., Zanotto, E. D., J. Non Cryst. Solids, 331/1-3, (2003) 145156.10.1016/j.jnoncrysol.2003.08.076Google Scholar
9. Prado, M. O., Fredericci, C., Zanotto, E. D., J. Non Cryst. Solids, 331/1-3 (2003) 157167.10.1016/j.jnoncrysol.2003.08.077Google Scholar
10. Prado, M. O., Zanotto, E. D., Comptes Rendus Chimie 5(11): 773786NOV 2002.10.1016/S1631-0748(02)01447-9Google Scholar
11. McColm, I J. (1990). Ceramic Hardness. New York: Plenum Press.10.1007/978-1-4757-4732-4Google Scholar
12. Müller, R., Journal of Thermal Analysis, Vol 35, pp 823835. (1989).10.1007/BF02057238Google Scholar