Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T20:16:48.134Z Has data issue: false hasContentIssue false

The Crystallization Mechanism of Poly-Si Thin Film Using High-power Nd:YAG Laser with Gaussian Beam Profile

Published online by Cambridge University Press:  01 February 2011

Hsiao Wen Zan
Affiliation:
[email protected], Display Institute, Department of Photonics, NCTU, 1001 Ta Hsueh Rd. MIRC Building 513R, National Chiao Tung University, HsinChu, N/A, 300, Taiwan
Chang Yu Huang
Affiliation:
[email protected], Display Institute, Department of Photonics, NCTU, 1001 Ta Hsueh Rd. MIRC Building 513R, National Chiao Tung University, HsinChu, N/A, 300, Taiwan
Kazuya Saito
Affiliation:
[email protected], Chiba Institute for Super Materials, ULVAC, Chiba, N/A, N/A, Japan
Kouichi Tamagawa
Affiliation:
[email protected], ULVAC Chigasaki, Kanagawa, N/A, N/A, Japan
Jack Chen
Affiliation:
[email protected], ULVAC Taiwan, HsinChu, N/A, 300, Taiwan
Tung Jung Wu
Affiliation:
[email protected], ULVAC Taiwan, HsinChu, N/A, 300, Taiwan
Get access

Abstract

This paper studies the poly-Si crystallization mechanism under the high power (200 W) Nd:YAG solid state pulsed laser annealing system. It is found that the Gaussian-distributed laser beam profile successfully produce large super lateral growth process window. The devices in the SLG process window exhibit field-effect mobility around 250 cm2/V.s and the threshold voltage lower than 1 V. The influence of a-Si film thickness and the laser scan pitch on the process window is also carefully investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Serikawa, T., Shirai, S., Okamoto, A., and Suyama, S., IEEE Trans. Electron Devices 36, 1929 (1989).Google Scholar
2. Im, J. S., Kim, H. J., and Thompson, M. O., Appl. Phys. Lett. 63, 1969 (1993).Google Scholar
3. Brotherton, S. D., McCulloch, D. J., Gowers, J. P., Ayres, J. R., and Trainor, M. J., J. Appl. Phys. 82, 4086 (1997).Google Scholar
4. Matsuo, N., Aya, Y., Karamori, T., Nouda, T., Hamada, H. and Miyoshi, T., Jpn. J. Appl. Phys. 39, 351 (2000).Google Scholar
5. Hara, A., Takei, M., Yoshino, K., Takeuchi, F. and sasaki, N., Jpn. J. Appl. Phys. 43, L790 (2004).Google Scholar
6. Kitahara, K., Ohashi, Y., Katoh, Y., Hara, A. and Sasaki, N., J. Appl. Phys. 95, 7850 (2004).Google Scholar
7. Hara, A., Takei, M., Tajeuchi, F., Suga, K., Yoshino, K., Chida, M., Kakehi, T., Ebiko, Y., Sano, Y. and Sasaki, N., Jpn. J. Appl. Phys. 43,1269 (2004).Google Scholar
8. Kitahara, K., Moritani, A., Hara, A. and Okabe, M., Jpn. J. Appl. Phys. 38, L1312 (1999).Google Scholar
9. Kitahara, K., Yamazaki, R., Kurosawa, T., Nakajima, K. and Moritani, A., Jpn. J. Appl. Phys. 41, 5055 (2002).Google Scholar